
AD-A262 395_ ___

US Army Corps
A 1ECTE

of Engineers APR 5 1993C

Transition to Ada.

Executive Software Subcommittee
Field Information Managoment User's Group (FIMUG)

OQo(o 9z a.r7 S

Reproduced From

Best Available Copy

93-06945
December 19921

REPORT DOCUMENTATION PAGE Form Approved
0A411 No. 074 0188

Public tO93krtissif burden tot Ithis C10IIc f " P ,ofnormnation I.*tIa d to Aveage9 I hour pot ifesposse includif9I, rotrning theIsUet lonnO.s- snon 9 *0.1'19 dole *Oit-te,
loeth,n.9 an ..a na.n, n9- s h 1 .dat iiadod. an0 eonpirstrn 0.0 40-an twr Ith Co$l t~lo ct.. nIa t It n $#nd Contfiffiliti regardingd It,,. to don *.,,rt-oi sit any Other 0 pa ct 01 11',0
olfacotion at Itortn.Inelud11no suggesh Oto,*' 1: doln tt0,1.1 bard, , t Wilnisl.%..t,,nqtnnr troodiwa~ttno Services O,1fooatnot for Infontnanot~n Operations end Reports 1215 I0,n
11%sle MrN.sihssc. 111.ta 1204 Airnlss n.. VA 22202-32 and tthe Offic nt blntr9....ont end Budget Paperwork Porinutron Prolidrot (0704-0188). Durr n C 20S03

1.AGENY USE MY (Ldeave blank) r1 lPORT DATE J3. FEP0AT ANEA(TESO~OVERED

F February 1993 Final Report
4. MrTE APD SLEBTrL1E 5. RFJ'OIG NJMBERS

Transition'to Ada

6. AUMHORS)

Executive Software Subcommittee (FINUG)

7. PERFRMG *G~ANiZArl,4 NAM~(S) ANDADDRESS(ES) & PEFOWIN3 OGANZATICN
REPORTNMJBER

9. SPCNSCRta9 NTC~taAGENCY NAME~(S) AND ADDSS(ES) 10. SMNSORIG4!CNTO1'$3
AGENY FEPO*RT NLAER

US Army Corps of Engineers
Washington, DC 20314-1000

USAEWES, Information Technology Laboratory
39n9 Halls Ferry Road, Vicksburg, MS 39180-(199____________
11. SUPPLEknENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161

12& DISTRIBJTGAVALABLfTY STATEKENT i1b.DISTR1BUrTCNCCD

Approved for public release; distribution is unlimited.

13.ABSTRACT (Mvam.i.' 200 words)
This report addresses issues relevant to the transition to the use of Ada from a
Corps of Engineers perspective. The direct discussion of these issues is preceded
by background material on Ada itself. First, the Department of Defense (DoD)
software crisis that led to the development of Ada is described and the causes
underlying it are discussed. Next, a brief history of Ada is presented to show
how it fits into the Government's approach to meeting the crisis. This includes a
discussion of the guidelines which apply to the use of Ada, specif-ically the
Congressional mandate to use Ada and the pertinent DoD and Army regulations. The
second major section of this report discusses the Corps transition to Ada. This
transition will involve not only a change in the programming language used by the
Corps, but also a change in development philosophy; software en;ineering princi-
ples must be incorporated into the development proccs3 for the transition to be
successful. The various issues to be addre3sed by the Corps in order to accom-
plish this are then presented. The report concludes with recommendations concern-
ing practical steps Corps development sites can take to ensure a successful tran-
sition to the use of Ada.

14. SRECTTERMS 15. MJ/ERCFPAGES

Ada, software engineering 16. PRICE OM

17. SECURITYCLASSFCA1TU 18. sEcuRrry C2ASSFrATK)N 19. SECLJRrTY CLASSFICATIJ 2D. LPATATIN OFABSTRACT
CF REPMT OFC 0THIS PAGE CF ABSTRACT

UNCLAS1IFIED UNCLASSIFIED __________

YSN754WO-2o55o S~dd Fain 298 (Refil. 2-R)

PREFACE

This report was prr~pared by the Executive Software Subcommittee established by the Field Informa-
tion Management User's Group (FIMUG) of the US Army Corps of Engineers (USACE). FIMUG is a
field advisory body to the Director of Information Management. The Executive Software Subcommittee
was assigned the task of preparing a report giving background on and discussing issues relevant to the
mandated transition to the Ada programming language. This white paper is that report

Much of the information presented here is drawn from a study conducted by Dr. Orville E. Wheeler,
Memphis State University, which specifically addressed the transition of PC-targeted systems develop-
ment from a C, C-Scape, dbVista environment to an environment based on Ada [29]. Ms. Lynn Mikulich,
Construction Engineering Research Laboratory (CERL), contributed to the description of the Rational
Environment, and Mr. Ralph Kahn, Oracle Corporation, to the discussion on Ada/Oracle interfaces.
Where noted, information has been drawn from the Ada Information Clearinghouse (AdaIC). While
much work has gone into the development of this report, it should be emphasized that it is introductory,
not comprehensive, in nature; doubtless there are questions related to Ada which have gone unanswered.
Nevertheless, after reading this document managers should be aware of the broad issues associated with
the transition and of the resources availablewhen further investigation is necessary.

Mr. Mark N. Bovelsky, US Army Toxic and Hazardous Materials Agency (THAMA), is Chairman
of the Executive Software Subcommittee. Other members of the Subcommittee are Mr. Richard Adrian,
US Army Engineer District, Kansas City, Mr. Cal Corbin, CERL, Mr. David Furr, Corps of Engineers
Automation Plan (CEAP), Mr. Gregg Hoge, Cold Regions Research and Engineering Laboratory
(CRREL), Dr. WindelU Ingram, US Army Engineer Waterways Experiment Station (WES), and Ms. M.
Barbara Schmidt, THAMA. Dr. Orville E. Wheeler, Memphis State University, Dr. William A. Ward, Jr.,
University of South Alabama, Ms. Lynn Mikulich, CERL, and Mr. Ralph Kahn, Oracle Corporation,
assisted the Subcommittee in compiling this report. Dr. N. Radhakrishnan, Director, Information Tech-
nology Laboratory, WES, is Chairman of FIMUG. COL Billy J. Ricks, EN, is Director of Information
Management for USACE.

crY.=. TTA17 7 4

Accesiori For

NTIS CRA&I
DTIC TAB 0
Uriannonrced 0l
Julst iti(.;ation

By
Distribution I

Availability Codes
Avail andlor

Dist Special

a-\ 1

TABLE OF CONTENTS

PR FCRE................................ACE..

EXECUTIVE SUM AY.. 3

INTRODUCTION TO ADA.. 4

Past Problems... 4
Potential Solutions... 4
A History of Ada .. 5
The Supeuiority of Ada ... 7

THE CORPS TRANSITION TO ADA... 9

Scope of the Transition .. 9
Compiler Selection ... 4...... 9
Personnel Training..I I
The Rational Environment*----,* 12
Ada/Oracle Interfaces .. 15
Other Tools.. 16
How to Proceed ... 20

APPENDICES .. 23

Appendix A: DoD Directive 3405.1 .. 24
Appendix B: HQDA LTR 25-90-1 .. 3.1
Appendix C: The Congressional Ada Mandate ... 43
Appendix D: Ada vs. C++... 45
Appendix E: Selected Ada Vendors... 53
Appendix F: Ada-Related Organizations... 55
Appendix G: Ada Events Calendar ... 56
Appendix. H: Glossary of Acronyms.. I....... 60.

REFERENCES... 62

BIBLIOGRAPHY.. 64

2

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

This report addresses issues relevant to the transition to the use of Ada from a Corps of Engineers
perspective. The direct discussion of these issues is preceded by background material on Ada itself.
First, the Department of Defense (DoD) software crisis that led to the development of Ada is described
and the causes underlying it are presented. Potential solutions to the crisis are discussed, including pro-
grammer productivity aids, structured programming, standardization efforts, computer-aided software
engineering (CASE) tools, and research centers. Next, a brief history of Ada is presented to show how it
fits into the Government's approach to meeting the crisis. This includes a description of the systematic
design and review process to which preliminary versions of Ada were subjected, followed by a discus-
sion of the guidelines which apply to the use of Ada, including the Congressional mandate to use Ada
and the pertinent DoD and Army regulations.

The second major section of this report discusses the Corps transition to Ada. This transition will
involve not only a change it, the programming language used by the Corps, but also a change in develop-
ment philosophy; software engineering principles must be incorporated into the development process for
the transition to be successful. The various issues to be addressed by the Corps in order to accomplish
this are then presented. The first of these is tht selection of a compiler for PC platforms. This issue is
discussed using results drawn from a Corps-sponsored study which reviewed various Ada compilers and
development tools. "The importance of formal training for programming staff is stressed. A four-week
sequence of courses is proposed which covers object-oriented design, Ada coding, and object-oriented
analysis. Other aspects of training, including attendance at technical conferences and acquisition of
relevant literature, are also discussed. Because of their importance to the Corps during the Ada transi-
tion, two special topics are then addressed: the Rational Environment (a state-of-the-art Ada program-
ming support environment) and use of Ada with the Oracle RDBMS. CASE tools will have to be
acquired to support this effort; examples of such tools, including code production environments, screen
generators, database managers, analysis and design aids, and metrics collectors, are described to illustrate
the range of capabilities available.

The report concludes with recommendations concerning practical steps Corps development sites can
take to ensure a successful transition to the use of Ada. The most immediate of these are acquisition of
Ada compilers and programming support environments, initiation of a training sequence, selection of
Ada experts at each site, and making a decision regarding acquisition of the Rational Environment. An
important long-range recommendation would be for the various development sites to successfully partici-
pate in the Software Engineering Institute's (SEI) Software Process Assessment. As a final note, readers
should view the mandate to use Ada as an opportunity for the Corps to assume a leadership role within
the Army in the area of software development. The Corps of Engineers has a long history of engineering
many things well, and there is no reason why the Corps should not engineer software well, too.

3

INTRODUCTION TO ADA

INTRODUCTION TO ADA

Past Problems

Government activities depend increasingly, if not totally, on information technology for their suc-
cessful completion. Because declining appropriations are forcing reductions in manpower while work-
loads continue to increase, this dependence will accelerate as functional organizations automate more
and more tasks. This will in turn increase the workload of information management (IM) as they aid
these organizations in this automation process. Unfortunately, IM is not immune from current budgetary
pressures; as a result, it must automate its own software ezvelopment activities.

This fiscal difficulty, although serious enough in and of itself, is not the only problem faced by
software developers. There is another which has plagued JIM for many years and which manifests itself
in software systems which are delivered years late, which are delivered without all of the required capa-
bilities, or which are not delivered at all. Furthermore, many such systems, even those which meet their
functional specifications, perform at unacceptable levels because they are designed for and installed on
computer systems of insufficient power. "To illustrate the extent of the problem, consider the findings of
a study of nine DoD software deve'lopment contracts totaling $6.8 million:

*On software that was delivered but never successfulfly used, $3.2 million was spent.

*On software that was paid for but not delivered, $1.95 million was spent.

*On software that was delivered and used, but had to be extensively reworked or abandoned, $1.3
million was spent.

*Out of the $6.8 million, $119,000 was spent on software that was used as delivered.

Unfortunately, such waste is common. Most large technical organizations can chronicle legendary
software Istes." [25, pp 2-3]

There are several reasons for this system development crisis. First, many project managers are
optimistic when specifying the scope of a project because they want to solve as many of their IM prob-
lems as possible. Second, reaching consensus on automation needs is time-consuming; the current
method involves isolating key personnel at a remote site for one or more months to analyze needs and
produce requirements. This is disruptive to work at the home sites and there is still no guarantee that
significant changes in these requim~ments will not be necessary. Third, contractors have little incentive to
limit project scope, because the more objectives there are, the more money there is to be made. Fourth,
even if Government project managers are realistic in their estimrates of what can reasonably be done in a
given period of time, they generally do not have the technical expertise or the time to ascertain if the con-
tractor is following accepted software development practices, much less using appropriate modem
software engineering methodologyý Furthermore, contractor personnel who actually design and imple-
ment the system rarely have sufficient software engineering experience becau~se "graduates of computer
science programs at major universities have never heard of software engineering, let alone tools and tech-
niques for producing high-quality so~tare products." 125, p 3]

Potential Solutions

The computing community has long recognized the need to facilitate the timely production of large
software systems. Many of these have focused on improving the productivity of individual progmra.riers,
including the invention of assemblers (to replace the use of machine language), compilers for third

4

INTRODUCTION TO ADA

generation high-level languages (to replace the use of assemblers), fourth-generation language processors
(to replace use of compilers), full-screen language-specific editors (Io replace use of keypunches and line
editors), the use of source code version control tools such as make and sccs (to reduce the complexity of
the edit-compile-test cycle), and the use of structured programming (to reduce the complexity of the
software itself).

The Government has also initiated a number of efforts to resolve the software development crisis.
Perhaps the most successful of these are the standardization activities, including the establishment and
ongoing revision of the Federal Informatiorn Processing Standards (FIPS) [12] by the National Institute for
Standards and Technology (NIST, formerly the National Bureau of Standards); these FIPS address issues
ranging from hardware data formats to programming language features. More recent efforts at standardi-
zation include the required use of Ada for all new DoD software projects and the establishment of stan-
dard documentation formats (DoD-STD-2167/2167A). Other organizations are also active in this pro-
cess, including the Institute for Electrical and Electronic Engineers (IEEE), which has promulgated stan-
dards for software engineering and software quality assurance [1,2,4], as well as the American National
Standards Institute (ANSI), and the International Standards Organization (ISO), which have produced
standards for various programming languages. Finally, there are de facto standards which exist by virtue
of their widespread use; examples include operating systems (DOS, MVS, and UNIX) window environ-
ments (Microsoft Windows and the X Window System), and printer control languages (HPPCL and
PostScript).

Unfortunately, use of programmer productivity aids is tactical in nature because it addresses only
the implementation phase of the software life cycle. The standardization efforts are an example of a
more global approach, but enforcing use of such standards by contractors is sometimes difficult for non-
technical personnel, and in any case such efforts do not go far enough toward addressing the real issues.
What is needed is a more strategic approach; experts in both the academic and commercial worlds have
recognized this and a number of possible approaches have been proposed, including groupware (GW),
computer-aided software engineering (CASE) tools, object-oriented design (OOD), object-oriented pro-
gramming (OOP), and rapid prototyping.

DoD has recognized the potential of such methods and has established several centers to encourage
further software engineering research and to transfer this technology to DoD projects. These centers
include the SEI, at Carnegie-Mellon University in Pittsburgh, the US Army Software Engineering Direc-
torate at Fort Monmouth, the US Army Institute for Research in Management Information, Communica-
tions, and Computer Science (AIRMICS) at the Georgia Institute of Technology, and the US Air Force
Software Technology Support Center (STSC) at Hill Air Force Base. Other DoD programs that address
software engineering issues include the Software Technology for Adaptable, Reliable Systems (STARS)
Joint Program Office, partially sponsored by the Defense Advanced Researched Projects Agency
(DARPA), and the Data and Analysis Center for Software, which provides the DoD with data, informa-
tion, products, and services in order to facilitate technology transition.

A History of Ada

Why has Ada been selected by DoD as the required high-order language? How does it fit into the
solution approach described above? To answer these questions, some background on the history of Ada
is required. A study performed during 1973 and 1974 revealed that the Department of Defense was
spending $3 billion per year on software, that this cost was steadily rising, and that most of the cost was
consumed not by development of new systems, but by maintenance of old systems. The rea ns for this
were apparent; DoD sqoware projects were so fpecialized that the contractor who originally developed
the system was almost invariably the only one whc could maiptain it, thus limiting competitiveness and
eliminating any incentive to cut costs [22, p 2].

5

- . - 7 / .- .- '. . . .

INTRODUCTION TO ADA

A second problem was the use of obsolete programming languages. "These languages, developed
in the early 1960s, did not support modem software engineering methods such as structured program-
ming, data abstraction, top-down program development, and re-use of general purpose components.
They provided no way of checking that separately compiled pieces of a program were consistent. A
modem programming language was needed to provide (1) support for program specification and valida-
tion, (2) better error checking and therefore more reliable programs; and (3) device-level input and out-
put, real-time operations without assembly language inserts." [22, p 2]

This situation was further aggravated by contractor use of project-speclfic programming languages
or pl-tform-specific versions of "standard" languages, "Because so many languages were being
developed for a single use, tools that could reduce the cost of developing and maintaining programs in a
particular language were very rarely built. Those tools that were built - compiler, linkers, editors, and
configuration control tools, among others - were rarely shared by different projects." [22, p 2]

The findings of the 1973-1974 study led to the establishment of the High Order Language Working
Group (HOLWG), which was charged with identifying a standard language for use throughout DoD, par-
ticularly for embedded systems. The HOLWG included members from the Office of the Secretary of
Defense, all three branches of the military, the DARPA, the Defense Communications Agency, and the
National Security Agency. The initial requirements for this language, tentatively named DoD-l, were
released in April 1975 and circulated within the Government and to selected outside experts in the field
of programming languages. This requirements document, termed "Strawran," was subsequently
revised to produce "Woodenman" in August 1975 and "Tinman" in January 1976; each revision incor-
porated recommendations provided by ,eviewers from government, industry, and academia. After firther
study, the HOLWG announced in Janupry 1977 that no existing language satisfied the Tinman require-
ments. The Tinman requirements were rewi-tten in the form of an actual language specification, dubbed
"Ironman," and an RFP for a language design was released in April 1977. Following an incremental
review spanning two years in which the number of designs was narrowed from seventeen to four to two,
the design proposed by CIU-Honeywell Bull was accepted. The formal language specification was ulti-
mately published in 1983 as ANSI/MIL-STD-1815A-1983, and as a FIPS [3].

Since the standardization of the Ada language specification in 1983, DoD has steadily moved
towards adopting Ada as the standard language for systems development. Initially, requirements for the
use of Ada applied only to embedded weapons systems. Even then, it was sometimes possible to obtain
waivers to these requirements. However, concerns about runaway software development costs, coupled
with the recognition that use of Ada throughout DoD would result in major cost savings, prompted more
stringent regulations. On 2 April 1987, DoD issued Directive 3405.1 which stated, "The Ada program-
ming language shall be the single, common, computer programming language for Defense computer
resources used in intelligence systems, for the command and control of military forces, or as an integral
part of a weapons system. Programming languages other than Ada that were authorized and being used
in full-scale development may continue to be used through deployment and for software maintenance,
but not for major software upgrades. Ada shall be used for all other applicatiori-, except when the use of
another approved higher order language is more cost-effective over the application's life-cycle, in keep-
ing with the long-range goal of establishing Ada as the primary DoD higher order language (HOL).'" [5]
In this context. : major software upgrade is defined to be "redesign or addition of more than one-third of
the software." The complete text of this directive is given in Appendix A.

HQDA emphasized the Army's adherence to this policy in LTR 25-90-1, issued on 16 July 1990,
which specifically addressed "Implementation of the Ada Programming Language." This letLer stated,
"The Ada programming language as defined in ANSI/MIL-STD-1815A-1983 is the single, common,
high order computer programming language for all computer resources used in thc Army unless another
lan uage is mandated by a higher level directive. Existing software need not be rewritten in Ada solely

6

,:' ., . , , I N -

INTRODUCTION TO ADA

for the purpose of converting to Ada. All systems, however, will transition to Ada when the next
hardware/software upgrade requires modification of more than one-third of the existing code over the
system life cycle, unless a waiver is obtained." [6] Waivers are not necessa"y for use of (1) off-the-shelf
software requiring no Government maintenance or modification, (2) SQL as an interface to a DBMS, (3)
non-SQL-compliant 4GLs to produce prototypes or systems with a useful life of less than 3 years, and (4)
machine or assembly language in performance critical sitdiations when the ratio of non-Ada to Ada
source code does not exceed 15% and the non-Ada code is not more than 10,000 lines. All other situa-
tions require waivers. Requests for waivers must be accompanied by a thorough cost and technical
analysis which clearly demonstrates the cost effectiveness of the proposed language. The complete text
of this letter is given in Appendix B.

FImally, on 5 November 1990, the President signed the FY 1991 DoD appropriations bill (Public
Law 101-511) Section 8092 of this law, popularly known as the "Ada Mandate," states, "Notwithstand-
ing any other provisions of law, after June 1, 1991, where cost effective, all Department of Defense
software shall be written in the programming language Ada, in the absence of special exemption by an
official designated by the Secretary of Defense." [71 Supporting information on this law is given in
Appendix C.

The Superiority of Ada

Responses to these policy statements from the software development community have often been
quite skeptical, and many still question Ada's purported cost benefits. From a scienri fic perspective, one
of the strongest challenges has come from adherents of object-oriented design (OOD) and object-oriented
programming (OOP). This relatively recent technology emphasizes the correspondence between objects
and operations in the real world and data types and operations in a software system. It promises order-
of-magnitude improvements in software development productivity. Although object-oriented principles
and methodologies are generally language independent, several languages have been designed to provide
object-oriented features. Smalltalk, at the same time a programming environment and a programming
language, is preeminent in this respec:. It claims to be a pure object-oriented language, but it typically
makes heavier demands on system resources than general-purpose procedural languages, and few large
software systems have been implemented in .L However, these particular criticisms are not valid for
Ada's strongest challenger, C++. This language was designed to directly support object-oriented tech-
niques and at the same time be completely upward compatible with C. In an attempt to obtain a waiver to
the use of Ada, the Air Force conducted a study to determine the relative cost effectiveness of Ada and
C++ [10]. (An overview of the Air Force report is given in Appendix D.) Surprisingly, the study deter-
mined the opposite of what many anticipated, Ada, not C+., was found to be superior.

This study consisted of four substudies which comped the two languages from various perspec-
tives. The first substudy, performed by the Institute for Defense Analyses (IDA), addressed tools,
environments, and training. Their report concluded that there are more US vendors of Ada compilers
than C++ compilers (28 vs. 18), that Ada compilers are subjected to a relatively rigorous validation pro-
cess whereas C++ compilers cannot be validated because \no C++ standard even exists, that Ada has
cross-compilation systems and code generators while C++\does not, and that 223 universities and 13
DoD installations teach Ada compared to 4 and 0, respectivqly, for C++. The second substudy was con-
ducted by the SEI and included a quantitative comparison oý the two languages based on six categories:
capability, efficiency, availability/reliability, maintainability/extensibility, life cycle cost, and risk. Ada
was clearly superior by a score of 78.8 to 63.9 (on a 100-point scale). The third substudy, completed by
CrA, concluded, "Ada projects have reported 15% higher productivity with increased quality and double
the average size. Normalizing these data to comparable size pr-':ts would result in an expected Ada
productivity advantage of about 35%." Specifically, their data indicated that C++ suffered from error
rates three times greater than Ada (as measured at the software formal qualification test). The final study,

7

INTRODUCTION TO ADA

performed by TRW, established 18 criteria to judgc the life cycle cort effectiveness of the two languages.
A panel of experts was then used to establish the scores aid weights for each of these criteria; the score
for Ada was 23% higher fo." MIS systems and 24% higher for C systems. The study's overall conclu-
sions are given below.

All four substudies which speci fically compared Ada and C++ (IDA, SEI, CTA, TRW) report
a significant near term Ada advantage over C++ for all categories of systems. This advantage
could be eroded as C++ and its supporting environments mature over the next few years. On
the other hand, as aggressive overseas Ada initiatives stimulate even wider domestic Ada
interest, as Ada tools/environments fuither mature, and when the Ada update (Ada 9X) is
complete, the balance could tip further in Ada's favor.

Adding to the case for Ada is that the Ada scoring so well herein is Ada's 1983 version, MIL-
STD-1815A. Just as C++ incorporates into C certain software engineering concepts already
in Ada (e.g., modularity, strong typing, specification of interfaces), so an Ada update now
underway will bring into Ada selected features now inclhded in C++. This update, known as
the Ada 9X Project, is targeted for completion in 1993 [11]. The product of extensive com-
munity involvement (including the C3 and MIS communities), Ada 9X will bring to Ada such
improvements as decimal arithmetic, international character sets, improved input/output, sup-
port for calls between Ada and other languages, further representation specifications, and
inheritance/polymorphism (popular features of C++). At the same time, Ada 9X has been
designed so that neither existing Ada benefits nor performance will be lost. For example, Ada
9X inheritance will be controlled so as not to reduce life cycle supportability.

In summary, Ada is the most cost effective programming language for DoD applications.
Specifically, it is not possible to make a credible case for the existence of classes of "more
cost effective" C++ systems compared to Ada. Business cost effectiveness data collected for
this study are typified by the TRW conclusion that Ada provides developmer.t cost advan-
tages on the order of 35% and maintenance cost advantages on the order of 70%. In terms of
future life cycle costs, it will be some time before data exists which could justify a cost sav-
ings for C++. Today, thexe is limited life cycle data available for Ada and almost none for
C++.

For the foreseeable future, then, there are more than enough reasons for the DoD to stick
firmly with Ada for all high order language (3GL and 3-1/2 GL) development and for
exclusive use as a target language of 4GL application generators in the large class of applica-
tions for which 3GL code must supplement generated code [10].

These conclusions carry particular weight for the Corps when one notes that the study focused on
information and C3 systems (not embedded weapons systems), and thzt those who initiated the study
were biased toward C++ and against Ada.

8

T.E C T T ADA

TTE CORPS TRANSITION TO ADA

THE CORPS TRAN•SITION TO ADA

Scope of the Transition

Without the Ada mandate, the Corps would have three alternatives in the area of programmting
language selection: to stay with whatever is currently in use, to adopt a more modem language other
than Ada, or to adopt Ada. The first approach has been tried for over a quarter cenmury and has proven
ineffective. The most promising choice for the second alternative, C++, is still immature, lacking a stan-
dard and associated development tools. Ada, the third choice, has proven its effectiveness in numerous
large projects, has a standard which has been in place almost ten years and which ib rigorously moni-
tored, and has a wide variety of tools wlhch are available to assist programmers and analysts. Even if the
Government had not required the transition to Ada, there would still be many compelling reasons to do
so, and no compelling reasons not to do so. Pursuing this third choice will, however, have a price. The
immediate costs will be associated with the purchase of Ada compilers and the training of programmers.
Learning the Ada language will be. relatively straightforward for those developers who are already
experienced with Pascal and, to a lesser extent, C. Those who have programmed exclusively in FOR-
TRAN or Cobol will typically require a longer training period.

However, if the transition to Ada involved only a %;hange in programming language, it would indeed
be relatively painless. Unfortunately, this is not the case. Additionally, to maximize the benefits of the
change, recognized software engineering principles must be incorporated throughout the software life
cycle. More specifically, the underlying methodology used by project leaders to design large software
systems must be changed; the leading contender for this methodology is the object-oriented approach
already mentioned. Secondly, computer-aided software engineering (CASE) tools must be acquired to
automate the development process; these range from language-sensitive editors which help minimize
syntax errors to high-level design tools which facilitate application of an object-oriented methodology.
Fimally, application programmers and analysts must be equipped with a development platform which has
greater functionality than the current DOS-based environment. The memory limitations inherent in DOS,
the absence of protected mode execution, its lack of virtual memory, i~s inability to support multiple
users, the absence of true multitasking (even with Windows), and its inability to support multiple users
are deficiencies which limit the productivity of applications developers. That Microsoft recognizes these
shortcomings is evidenced by their soon-to-be-released NT operating system. Other candidates include
IBM's OS'2, and of course, the more mature and nonproprietary UNIX operating system. However, these
three additional issues would need to be resolved regardless of the langu.,,e selected; furthermore, they
must be resolved to make optimum use of Ada in th. development of large software systems.

Compiler Selection

Many computer manufacturers provide compilers for taeir own systems while other software com-
panies hame produced cross compilers primarily for embedded systems. From the Corps' perspective,
however, there are currently three major independent Ada compiler vendors: Alsys, Telesoft, and Verdix.
Of these three, Alsys is probably the vendor of choice for the Corps' Control Data (CD) and PC plat-
forms, although the Verdix VADS environment is probably better for RISC workstations [13]. Alsys
offers compilers for a broad range of hardware platforms, including IBM-compatible PCs running DOS
and UNIX, various Motorola 68000-based computers (Apple Macintoshes, Apollo Domain workstations,
HP 9000/300s, and Sun-3s), most RISC-based workstations and servers (DECstations, IBM RS/6000s,
MIPS, and Sun SPARC), DEC VAX/VMS workstations and minicomputers, and IBM 370 series main-
frames. The platforms of particular interest to the Corps are 80X86 running DOS, to be discussed below,
and the Control Data 4000 series. Control Data has licensed the Alsys Ada compiler for MIPS-based sys-
terns and has placed it on the Corps of Engineers Automation Plan (CEAP) contract. The contract line

9

THE CORPS TRANSITION TO ADA

item number, license cost, and monthly maintenance charge are 1075TH, $7500, and $125 for the CT)
4330, 1075TJ, $15,O0O, and $250 for the CD 4360, and 1075TK, $20,000, and $334.34 for the CD 4680.
This product consists of a compilation system, which includes the Ada ccompiler, global optimizer, li!,-er,
library manager, run-time executive, standard Ada packages, ard an ISO-compliant math library, as well
as a tool set, which includes a source-level symbolic debugger, recompiler to automate he system
rebuilds, cross reference generator, source code re.formatter with user-controllable options to enforce par-
ticular coding standards, syntax checker, source generator to produce source code from compilation
units, name expander to convert identifiers visible through use clauses into fully qualified names, and
profiler to determine where execution time is spent.

Many Corps programmers will initially use 80X86/DOS platforms for their development work.
Although there are over 270 validated Ada compilers avai~able today, only three run under MS-DOS:
FirstAda from Alsys, OpenAda from Meridian Software Systems (recently purchased by Verdix), and
Janus/Ada from R&R Software. As part of a Corps-sponsored study [29], these three compilers were
compared using cost, documentation, adherence to standard, resources required, support environment
availability, vendor history and future, upward migration, and performance as evaluation criteria. The
evaluations wer.e based on published reports in trade journals, personal communication with vendor
representatives, documentation supplied with each product, actual benchmarks performed for this study,
as well as personal experience with each of the compilers. Each of the three compilers was assigned a
score from I to 10 for each criterion and weights indicating the relative importance of each criterion were
then used to produce a weighted average. A complete description of the evaluation, including rationale
for the scores presentmd here, is proviJed in the study's final report [29]. The results displayed in the fui-
lowing table indicate the superiority of Alsys FirstAda (A) over its Meridian (M) and R&R (R) competi-
tors. Its documentation and performance were clearly better than the other two while recent price reduc-
tCons from Alsys make cost differences negligible (Alsys' volume price is $973.50 each, including media.
documentation, and one year of maintenance).

Evaluation Raw Scores Weight Weighted Scores
Criteria A M R Factor A M R

Cost 8 9 9 5 40 45 45
Documentation 9 6 2 10 90 60 20
Standard 9 8 6 8 72 64 48
Resources 6 8 9 2 12 16 18
Environment 8 6 7 8 64 48 56
Vendor 9 7 7 7 63 49 49
Migration 9 6 3 5 45 30 15
Performance 9 6 21 10 90 60 20

Aggregate 476 372 271
Percent 86.5 67.6 49.3

As a final comparison, the well-known Whetstone benchmark [23] was used to compare the perfor-
mance of Alsys FirstAda, Microsoft FORTRAN, Borland C, and Borland Turbo Pascal. The tests were
performed on a 16 MHz Zenith 386. Using a fall math library with run-time checking disabled, the
results, as measured in ,housands of Whetstone instructions per second, were 767, 650, 572, and 111.
Although this comparison is obviously not exhaustive, it does indicate that Ada compilers, at least as
exemplified by FirstAda, are competitive with other availble language compilers. Again, further informa-
tion on this benchmark may be found in the WES report. [29]

10t

THE CORPS TRANSITION TO ADA

Personnel Training

As noted earlier, because a successful transition to Ada will involve more than just changing com-
pilers. so will training programmers to use Ada involve more than teaching Ada syntax and semantics.
The required changes in tniinking and working patterns cannot be induced in software developers without
formal training. This approach will emphasize to the students the importance management attaches to
the Ada transition, much more so than if they are handed a book and told to pick up the technology on
their own. This training should develop in personnel a new perspective on the design of large software
systems and encourage the incorporation of modem software engineering practices into their develop-
ment projects. Based on successful experience az CERL, THA \A, and WES, it is recommended that this
training include an overview of the software development crisis and the history of Ada (two days),
object-oriented design with Ada (one week), coding programs in Ada (two weeks), and object-oriented
requirements analysis (one week). Modem software engineering principles should be incorporated into
every course. No more than twenty students should be in any class and only personnel having prior
experience with another procedural programming language should attend. At least one or two weeks
should elapse between courses to prevent students from becoming overwhelmed with new information.
Managers should attend the design and analysis courses if at all possible. System development work in
Ada should follow soon after the course work to p'ro,;C imn'miediate positive reintorcement of the con-
cepts learned during the training. When a large project is envisioned which involves development teams
at different sites simultaneously making the transition to Ada, a common training program is advised to
provide a common technical vocabulary, design methodology, and development philosophy.

The purpose of the initial two-day overview session should be to motivate the development staff for
participation in the remaining courses. This introduction should cover the DoD software development
crisis and the various attempts within the software engineering community to address it. The history of
Ada should be given to present the language as an essential part of the solution to this problem. Ada
should be compared to other programming languages, noting its similarities, its unique capabilities, and
the rigorous standardization process to which Ada compilers are subjected. Software engineering should
be introduced not as the application of an array of CASE tools, but as the application of good engineering
management piinciples to the development of software, i.e., understanding the problem, planning the
solution, constructing the design, executing the design, and communicating the solution. The need to
change from "h-nd crafted" software to "engineered" software should be stressed, and the improve-
ments in understandability, reliability, maintainability, and efficiency which will result from this change
should be noted. Object-oriented techniques should be introduced as a tool to effect this transition. Case
studies should be provided to illustrate the successful use of Ada in the development of large software
systems. Students should be impressed with the notion that Ada's overall design and many of its specific
features were intended to support software engineering principles and that the transition to Ada should be
viewed as a commitment to adopt those principles.

The remaining courses are intended to provide the necessary knowledge about the language,
software engineering, object technology, and the development environment to allow programmers to
begin using Ada. The object-oriented design (OOD) course should cover the following topics: motiva-
tion for using object classes to model the problem space; comparison of functional and object class prob-
lem decomposition; introduction to object-oriented design methodology; material necessary to introduce
the notion of separate compilation, including Ada prograin units, program structure, and the Ada program
library; the black-box principle for information hiding and data abstraction, including encapsulation,
packages, and private types; various Ada types, including integer, floating point, enumeration, record,
array, and access types; generics and predefined units. Case studies should be provided to illtistrate the
design process and how to critique a eesign. Exercises should be assigned to provide experience in the
use of Ada as a p;ogram design language [14]. The Ada coding course should cover the following topics:
overview of the syntax of various Ada statements; Ada identifiers; subprograms, input/output, and

11

THE CORPS TRANSITION TO ADA

exceptions; more in-depth coverage of Ada types than was provided in the previous course inicluding
when to use distinct types, subtypes, and predefined types; Ada control structures: loops, if stwtements,
case statements: additional information on generics, tasking. Class time should be about half lecture and
half hands-on work on coding exercises 115]. The object-oriented requirements analysis (OORA) course
should cover the following topics: introduction to OORA: comparison with other requirements analysis
techniques; role of object classes, attributes, and relationships in OORA; use of state and process models;
transition to the design stage. Practical application issues should be addressed through case studies arnd
extensive exercises [16]. The following topics from software engineering should also be covered at some
point in the course sequence: aims of software engineering; models of software development; require-
ments definition and evolution; design processes and strategies; software components and reusability;
programming for reliability, including exception handling and defensive programming; software testing:
programmer productivity, quality control, and software metrics.

After these courses are completed, steps should be taken to maintain staff expertise. Programmers
should be encouraged to obtain membership in t % ACM, ACM SIGAda, and the IEEE Computer
Society. If possible, the organization should subscribe to relevant publications from these organizations,
as well as any others which may be helpful. A recommended list would include Ada Letters, CrossTalk,
Communications of the ACM, and IEEE Computer. If possible, ACM Computing Surveys, ACM Transac-
tions on Informatior, Systems, ACM Transactions on Software Engineering and Methodology, IEEE
Soft'ware, IEEE Transactions on Software Engineering, and Software: Practice and Experience should be
added as well. T-is library should also include texts and conference proceedings covering Ada, object-
oriented technology, and software engineeting; the bibliography at the end of this report should serve as a
starting point for this eftort.

A few individuals should be selected to become the organization's Ada experts. They should be the
recipients of further training on a regular basis, stay aware of the activities of the Ada Joint Program
Office, and should also attend selected conferences and seminars, e.g., the TRI-Ada Symposium, the
Washington Ada Symposium, and the Software Technology Conference. Refer to Appendix G: Ada
Events Calendar for a more complete list of such events. Furthermore, they should become familiar with
Ada-related resources available over the Internet, such as those at the SEI, the Software Technology Sup-
port Center, and the SIMTEL20 database; these include technical reports as well as repositories of poten-
tially reusable Ada software components. The catalog by Nyberg [28] will be of particular assistance in
this respect. In addition to their regularly assigned duties, these individuals would be responsible for
keeping abreast of advances in Ada development and software engineering practice, acting as consultants
for the rest of the development staff, providing introductory assistance to new employees, and teaching
short courses as necessary.

The Rational Environment

Every software system is implemented in three environments, the decision environment, the design
environment, and the coding environment. The decision environment is that in which the system's
requirements are specified; here decisions are made regarding how much of a process should be
automated, what inputs must be supplied to the system, how those inputs are to be obtained, what outputs
the system will produce, how those outputs are to be presented, and how users will interact with the sys-
tem. Generally, input into this decision-making process is provided by functional managers and, occa-
sionally, by prospective end.users and system developers. The output from the decision environment
provides strategic guidance to the developers of the system. The subsystems are assigned to develop-
ment teams who may actually be independent contractors. These teams are responsible for taking the
broad guidelines supplied to them and incrementally refining the design until an actual working system is
obtained. The organizational and computational context in which this is done is termed the development
environment; it is broken into two subenvironments, the design environment and the coding environment.

12

/

THE CORPS TRANSITION TO ADA

In the former, technical managers make decisions regarding breakdown of subsystems into packzges and
modules, and the information flow betweecn them, while in the latter, programmers translate the design
into actual program text, which is then compiled, debugged, and tested.

There are numerous potential problems in this process. Because the magnitude of these problems is
so large and because they are so widespread, each is worthy of, and is being addressed by, research
devoted to that particular field. In each case experts are attempting to apply increased levels of automa-
tion to bring this software development crisis under control; within the first environment, the current
approach involves the use of the IDEF methodology [17] for business process modeling and computer-
supported collaborative work (CSCW) techniques such as electronic meeting systems [27] for reaching
group consensus; within the second, CASE tools, such as code generators, are proposed; within the third,
programmer productivity enhancements, such as language sensitive editors, have been applied.

However, even if satisfactory solutions are found to the problems within all of these environments,
the maximum benefit will not be obtained unless the three environments are integrated. The issue to be
resolved is one of communication; each environment involves a different group of people, each depend-
ing on feedback from the others to accomplish their objectives. Seamless interfaces between these
environments must be d~eveloped to facilitate smooth transfer of knowledge and specifications. THAMA
is currently sponsoring research at WES to remedy this situation. This work involves development of
prototype interfaces between existing solutions (IDEF, CSCW, and CASE) to make progress in a timely
manner. At the same time preliminary investigations are under way to explore the feasibility of a single
environment-spanning software system to provide such an integrated environment.

The system which holds the most promise for progress in this area is the Rational Envirornment"A.
which currently addresses the coding environment only. Site visits to Rational user sites indicate that it
is far superior to all other currently available -systems for implementing large software systems in Ada.
Because the Rational provides a programmable interface which will allow design tools to communicate
with it., it is hoped that it will be possible to extend its area of applicability to the first two environments.
Because it is so effective in enhancing programmer productivity, it is worth elaborating on its capabili-
ties.

The Rational Environment (or simply, "the Rational") is an integ~rated, interactive software
engineering environment for development, testing, maintenance, and control of large Ada projects. It
replaces the usual collection of edit, make, and version control utilities with a completely integrated sys-
tem for program development. For performance reasons, the compute intensive portion of this environ-
ment executes on Rational's own proprietary hardware, the R11000 processor. This environment server is
accessed over an Ethernet through a software interface available on Sun SPARC and IBM RS/6000
workstations running the X Window System, as well as PCs running Microsoft Windows. -One such
R1000 processor will support anywhere from five to fifteen developers, depending on the mix of editing
and compilation. An influx of large conmpilation jobs degrades the system's performance, but the intelli-
gence built into the system reduces the likelihood of such a situation.

Use of the Rational on a large project begins with use of the Rational Design Facility (RDF). It sup-
ports the requirements analysis and design phases of the software life cycle. Ada is used in this context
as a program design language (PDL) for requirements capture, software design, and MIL-STD-2167A
compliant document generation. The RDF also supports integration with third-party CASE and desk top
publishing software packages, including Cadre Teamwork~m and Interleaf TPS'M.

During the code development phase, the Rational provides an intuitive w'ndow-based interface
which allows users to browse Ada systems according to syntactic structure or semantic dependencies.
After identifying the portion of the code which is of interest, programmers use Rational's Configuration
Management and Version Control (CMVC) feature to check out individual procedures or entire packages

13

THE CORPS TRANSITION TO ADA

for development or modification. This allows one programmer exclusive access to some portion of the
software and thus prevents developers from "stepping on one ano"ier's toes." Rational's Ada-sensitive
editor is then used to enter program statements. Ada packages, procedures, functions, loops, and other
program structures are automatically closed with the appropriate end statements, thus minimizing the
possibility of syntax errors. This editor also al'jws customization and enforcement of site-specific cod-
ing standards.

Periodically, the current version of the program must be tested. Ada is a strongly typed language,
and it checks subprogram calls with subprogram definitions to insure argument compatibility. Further-
more, compilation units (e.g., subprograms and packages) may import other packages in order to use their
type and variable declaratioais, and such imported references must match the original declarations. These
relationships between compilation units are called dependencies and a compilation unit which accesses
or uses the resources of another is said to be dependent on that unit. Obviously, the dependent unit must
be compiled after the unit on which itdepends. In large Ada software systems it is common for what
seems to be a minor modification to require recompilation of many units because of the chain of depen-
dencies. If such systems are sufficiently large, the time required for recompilation becomes the
bottleneck in the development process. The Rational Environment avoids this problem through irdtelli-
gent dependency checking and incremental compilation. The former feature allows the Rational to avoid
recompilation of dependent units if a modification has no impact (e.g., a comment was added or
changed). After this impact analysis, only those statements which are dependent are recompiled. (This
statement by statement compilation is possible because Ada programs Iare stored using the Descriptive
Intermediate Attributed Notation for Ada (DIANA) [26]. Ada objects (e'g., statements) are implemented
as DIANA structures that represent syntactic structure and include semantic information and executable
code. This is much different from the conventional approach of source code, object code, and executable
images that are stored in separate files.)

When a version of the software is required for the actual target platform, Rational's Target Build
Facility allows convenient transfer of source code to and compilation on a particular host. This process is
facilitated by the Rational Compilation Integrator, which permits any 'third-party Add compiler to be
integrated with and managed by the Rational Environment. This tool allows developers to build software
for multiple platforms (mainframe, minicomputer, workstation, personal computer) at the same time.
With the Compilation Integrator, only those portions of the program (individual unit, unit closure, subsys-
tem, or, if required, entire system) are (re)compiled. Obviously this is more efficient than compiling the
entire system prior to every test. i

Periodically, project managers and team leaders require information' about the structure and status of
the system under development. Rational Insight"" performs this function by gathering information about
Ada units and subsystems from the integrated information repository and then displaying it in a graphical
fashion. The resulting diagrams show dependencies among the various program structures and aid in
understanding the relationships among the software components. During system reengineering, this is an
invaluable capability.

The SEI performed an evaluation of the Rational Environment for DoD [24]. This study assessed its
functionality in the areas of system installation, system administration, detailed design and coding func-
tions, testing and debugging, compiler quality, configuration management and project management func-
tions. The results of this study were very positive. THAMA, WES, and CERL have jointly conducted
their own evaluation of the Rational Environment, visiting Rational's Washington office for two technical
briefings and interviewing Rational users at four sites in northern Virginia. Impressions from these visits
were very favorable. Users who have conducted their own studies have emphasized that no other
development environment approaches the Rational in functionality. These users have particularly high
praise for Rational's customer assistance, stressing Rational's commitment to the success of the

14

THE CORPS TRANSITION TO ADA

customer's project. Ther; are, however, a few disadvantages to use of the Rational. It is quite expensive;
an entry level system, including hardware and software, costs about $250,000. Furthermore, a sigruficant
amount of training is required to take full advantage of this sophisticated environment's capabilities. In
spite of this required investment in hardware, software, and personnel, the Rational Environment is capa-
ble of increasing productivity, lowering labor costs, and adjusting to changes in requirements or target
platforms. For the forseeable future, it appears to be the best way to effectively develop large systems in
Ada.

Ada/Oracle Interfaces

The Congressional mandate to use Ada has posed some significant technical prc'blems for those
involved in MIS system development. Most MIS systems must utilize commercially available graphical
user interfaces (GUIs) and/or relational database management systems (RDBMSs); unfortunately, the
interfaces between Ada and these packages have traditionally been rather poor. This problem is com-
pounded by the lack of a single standard in each of these areas. For example, a program written for the
MOTIF GUI is not portable to the Open Look GUI, much less to Microsoft Windows, and an application
which accesses the Xdb RDBMS generally requires modification in order to run with the Oracle
RDBMS. The NIST has recognized these problems and responded with an RDBMS standard, FIPSPUB
127-1 [8], and a GUI standard, FIPSPUB 158 [9]. Adherence to these standards by both software vendors
and developers will make development of portable applications in Ada much easier.

The reaction of many software DBMS vendors, including Oracle, to the adoption of Ada and the
development of standards has been to provide bindings between Ada and their products. There are
currently four ways to construct an Ada/RDBMS interface: (1) proprietary application programmer inter-
face, (2) FIPS 127-1 compliant embedded SQL precompiler, (3) FIPS 127-1 compliant module language
compiler, and (4) SQL-Ada Module Description Language (SAMeDL) compiler. Because the first
method is neither standard nor portable, it does not satisfy the Government's needs. The last technique is
based on research at Carnegie Mellon University. It is still in an embryonic stage with no applicable
standards and no available commercial implementations. Neither of these techniques will be discussed
here.

The second method is currently the most widely used method of binding Ada programs to SQL-
based RDBMSs. From a technical perspective, such a FIPS-compliant Ada/SQL binding is merely a way
of allowing SQL statements to be embedded in an Ada program so that the program may exchange infor-
mation with a FIPS-compliant RDBMS. Prior to actual compilation, such a program is first processed by
a precompiler which translates the SQL statements into Ada statements. Oracle's implementation of this
method, Pro*Ada, was introduced in 1989 and has been sold to over 300 sites around the world. It is
available on a variety of platforms, including the Corps' Control Data CEAP systems as well as other
major UNIX platforms (e.g., HP, IBM, SCO, and Sun). Furthermore, Pro*Ada has the distinction of
being the first Ada/SQL embedded SQL binding to pass the NIST test for ANSI compliance. It has since
passed that test on many different platforms, both UNIX and non-UNIX. Although the use of Pro*Ada
adds an additional step to the process of program testing, it actually improves programmer productivity
and system performance. Moreover, it allows dynamic construction of SQL statements at runtime. The
nature of these benefits will be discussed in the following paragraph.

Improved programmer productivity is a result of Pro*Ada's extensive syntactic and semantic check-
ing. All SQL statements are validated during precompilation so that errors may be detected and
corrected before the potentially time consuming compilation and binding of the Ada program. During the
semantic checking phase, Pro*Ada queries the database to first determine if the table used in the SQL
statement actually exists, and then to see if the table has a column whose name matches the one men-
tioned in the statement. These features save developers from performing many useless compilations.

15

THE CORPS TRANSITION TO ADA

Increased system performance results from use of Pro*Ada's array interface (an extension to the FIPS
standard). Use of this interface allows insertion or retrieval of batches of records with a single database
call. For example, an EXEC SQL FETCH may fetch up to 32K records; this can reduce network traffic
because one fetch of 32K records requires fewer packets than 32K fetches of single records. Finally,
Pro*Ada allows dynamic construction of SQL statements at execution time. This powerful capability
allows construction of an SQL statement within a program variable and submission of the statement to
the RDBMS while the program is running (a feature similar in spirit to FORTRAN's object-time FOR-
MAT).

The third method is the newest approved standard for binding Ada programs to SQL-based
RDBMSs; it differs from the previous approach in that the Ada program and the SQL procedures
(modules) are stored in separate files. The SQL file is translated by the SQL*Module compiler into Ada,
then compiled, and placed in an Ada library. The Ada program is then also compiled and external refer-
ences to the SQL modules are satisfied from this library. Oracle's implementation of this technique,
SQL*Module, was announced in June 1992 and should be available in the first half of 1993. Prior to its
release it will meet the NIST test for FIPS-compliant module language compilers.

The first benefit of using this third technique is the clean separation of Ada and SQL, thus improving
maintainability and allowing developers to specialize in Ada or SQL without having to learn both. It also
allows developers to use Ada-specific tools and SQL-specific tools where they are appropriate. Addi-
tional productivity is obtained through the use of stored procedures. Developers may store their
SQL*Module procedures in a database and access them from an Ada program, thus promoting module
reuse.

Finally, another technique for improving productivity is the use of fourth generation languages
(4GLs). This involves specification of an application in a high-level design language (the 4GL), and then
translation of this program to Ada. Many such code generators are available; however, the vast majority
of them generate package specifications, type declarations, and procedure calls, but ^hen provide only
procedure stubs. An exception to this is the Oracle product GenerAda, a prototype of which was recently
demonstrated at TRI-Ada '92. it creates a complete application in Ada which is compilable and execut-
able. Early in 1993, WES will be working with Oracle, under the sponsorship of THAMA, to test and
evaluate this product using a real application.

Other Tools

Code Production Environments. Even if the Corps decides to obtain one or more Rational systems,
they will not be capable of supporting a large number of developers. Cost-effective tools must be found
to support the remaining developers. For this purpose the Corps requires a comprehensive tool set con-
taining high-level analysis and design aids, a code production environment, a database interface, a test
generation facility, software metrics collectors, and project management tools. These should be seam-
lessly integrated with an intuitive interface and be available on a variety of platforms, including PCs,
RISC workstations, and CD 4000 series servers. Unfortunately, such an environment does not exist. As
a first step in that direction, the Government has defined an Ada Programming Support Environment
(APSE) to assist coinmercial vendors in producing comprehensive software engineering environments.
The lowest defined level is called a Minimal APSE (MAPSE) and consists of an editor, compiler, library -

management system, linker, and run time environment. Except for the latter two items, which are pro-
vided by DOS, this MAPSE tool set is provided with the Alsys FirstAda compiler via a menu-driven
interface called Adam. Adam is actually built on top of the Alsys AdaWorld command line environment
and translates menu selections to AdaWorld commands. In addition to the MAPSE set, other features -

accessible through Adam include a verifier (fast syntax checker), source code level debugger, refor-
matter, cross referencer, make facility, and a line counting metric collector. Users may substitute their

16

//,

THE CORPS TRANSITION 10 ADA

own editor for the Adam default, and access to the operating system and the AdaWorld command line
environment is provided. Novice and expert modes of operation are available, which display few or

many menu options, respectively. The Adam interface takes up a significant amount of memory. Bind-

ing a moderately sized program will occasionally fail due to lack of memory for symbol tables; this may
be remedied by switching to the command line environment, Adaworld. In spite of this minor problem,
experience with this product indicates that it is a useful, effective, and smoothly integrated system for
Ada code production [29].

The Ada Workstation Environment (AWE), marketed by AETECH, is intended to provide a full set
of Ada programming tools. Like Adam, it is built on top of the Alsys AdaWorld command line environ-
ment running under DOS. Its features include an editor, library manager, macro generation facility,
compiler-binder control facility, templates for types and program units, and a menu for support tools.
These support tools, which must be purchased separately, include an on-line Ada reference manual, an
on-line computer-assisted instruction system, a hypertext Ada reference manual, an ASCII table, a border
graphics drawing tool, tool for conversion of numbers to different bases, and tools to perform top-down
structured design, object-oriented design, generation of source code from design, and generation of pro-
cedure body from procedure specification. The basic functions work very well, and the template facility,
not available in Adam, is particularly useful in making skeletons of program units. Most common tasks
have a convenient, single key operation; The built-in editor has a native set of key functions, but may be
reconfigured to emulate other editors. The primary alternative to AWE is Adam, and Adam's biggest
advantage is that it is bundled with the Alsys compiler. However, even without the additional tools,
AWE may offer enough additional functionality to be considered as an alternative, but a decision regard-
ing its adoption should be delayed until a decision is made on whether DOS or UNIX is to be the ultimate
development environment.

Screen Generators. Screen Machine, marketed by Objective Interface Systems, is an interactive
package that provides a means of graphically creating panels on a screen, editing these panels, and plac-
ing fields in them using the PanEdit interface. Panel information is saved in a database and the source
code to create these panels (two complete Ada packages) is generated by the program GenCode. To
complete the interface, the programmer writes the application software to manipulate these screens and
process the input data and then modifies one of the package bodies to handle specific input selections.
The major advantage of Scn-en Machine is the ease of producing the actual panel creation source code.
The user has only to enter the size, location, color, number ef fields, and any included title to create a
panel, and this is done through an interactive screen. Fields can easily be added to this panel to form a
database entry screen or just an information panel. The user is able to see the created panel and edit it
without having to write or compile any code. After the user is satisfied with the appearance of a panel,
two approaches are possible: first, the Ada program may access it as needed from a disk file, or second,
the Ada source code to create the panel may be generated and then incorporated into a program. The
former method minimizes program size, while the latter maximizes program execution speed. A major
disadvantage of the Screen Machine is its documentation. The version evaluated for the Corps was docu-
mented in a single three ring binder with chapteis dedicated to PanEdit, GenCode, and the package
libraries. The text was readable but vague, and lacked examples. Furthermore, the index has not been
updated to reflert changes in the text [29]. In summary, the Screen Machine is a good tool for learning
the process of screen development without having to actually program a screen from scratch. It enaoles
the user to see the screen as it is being created and allows one to make changes without repetitively
recompiling and relinking. The vcrsion described here seemed to lack the functionality required for more
elaborate I/O, although many developers at the Rational user sites visited by the Corps were using it
effectively and recommended it highly. This apparent difference in capability may, however, be due to
the Corps's evaluation of Screen Machine on a PC running DOS, while the Rational sites were using it on
RISC-based workstations running UNIX and the X Window System.

17

: , ..

THE CORPS TRANSITION TO ADA

The Textual User Interface (TUI) is a screen development tool written entirely in Ada and marketed
by AdaSoft, Inc. TUI is comprised of three tools: AdaWindows, which contains procedures for window
generation and control, AdaMenus, which deals with menus of various types, and AdaForms, which deals
with forms for input and output. Documentation for each package is provided separately and is of high
quality. A facility is provided for maintaining default values between sessions and for maintaining a his-
tory of all data entered. Some screen builders are, in effect, low level libraries of functions, while others,
such as Screen Machine provide a much higher level of abstraction. TIJ is a compromise lying between
these two extremes. It is composed of procedures and functions, but at an intermediate level with much
of the detail still hidden from the user. TUI includes a number of useful features; for example, when an
editor is needed in a field, it is present by default and does not have to be explicitly invoked, used, and
then exited. AdaForms handles I/O for all standard Ada types except records and arrays. strings are the
only array type allowed. In addition, it provides a List_.Class, for selection from a displayed list, and a
Text-Class, for I/O of multiple lines of text. Ada type checking is performed on input data to a field
before it is accepted. The TUI is a well designed, logically structured, flexible, well documented set of
components for screen building in Ada, and is available for both DOS and UNIX platforms [29].

Database Managers. Interfaces between Ada and DBMSs will be important to the Corps for the
development of management information systems. Possible interfaces to Oracle have already been dis-
cussed; three additional possibilities are considered here. The first is AdaSAGE, a public domain data-
base generation package written in Ada that produces a complete system, including interface screens.
The second alternative would make use of two products marketed by AdaSoft: AdaManager, which
creates and manipulates databases, and AdaQuest, which serves as an interactive interface to
AdaManager. The third possibility involves construction of an Ada "wrapper" around an existing
DBMS (dbVista III) using the Ada interface pragma.

AdaSAGE is a public domain package developed and maintained by the Idaho National Engineering
Laboratory (INEL); it is designed to facilitate rapid development of Ada systems. A descendant of the
SAGE system developed in FORTRAN by INEL about 10 years ago, AdaSAGE is the result of work on
the Marine Corps Combat Readiness Evaluation System (MCCRES). INEL produced a prototype of
MCCRES in Ada for the Marine Corps in Aisys Ada and at the same time converted SAGE to Ada. Pri-
marily suited to MIS applications, its capabilities include command line and embedded ANSI-compliant
SQL, graphics, communications, formatted windows, on-line help, sorting, editing, and more. AdaSAGE
applications can be run in the stand-alone mode or in a multiuser environment. One of the most powerful
features of AdaSAGE is the Generic RApid Prototyping Language (GRAPL). This interpretive language
allows complete prototyping of a database application that can be executed interpretatively without
actual compilation. After the developer is satisfied with the application, it is relatively easy to convert it
to Ada. Using AdaSAGE, it is possible to design and implement an application in a minimum of time
that performs well and is easy to modify. All four Services have reported significant success in develop-
ing applications with AdaSAGE; their experience has shown AdaSAGE to be equally applicable to both
sma 1 and large projects. The Government considers it to be an extremely valuable tool and continues to
fund its maintenance and enhancement. If the Corps decides to use AdaSAGE, the software itself is free,
but Corps personnel should attend formal AdaSAGE training provided by INEL, and one individual at
each development site should join the AdaSAGE User's Group ($1,600/year). As a member, this person
will serve as the organization's point of contact for AdaSAGE and will be provided with the following
services: current versions of software libraries and documentation, technical support via a telephone hot
line, access to electronic bulletin board services, newsletter subscription, and invitation to the annual
meeting held in Idaho Falls.

The second approach is the use of AdaManager/Adaquest. AdaManager produces a relational data-
base that is dynamically structured rather than built on a static schema. It allows the logical structure of
the data to be changed, and additional columns to be added without unloading and reloading the data. It

"18

, . .-...-... I


~~~~ " - /, .

THE CORPS TRANSITION TO ADA

is possible to insert, delete, update, fetch, select, and view rows as well as join and save tables, and re-
order rows during retrieval. The base types used are those of Ada except that strings are the only struc-
tured types allowed. AdaQuest is an interactive interface to the AdaManager database system. It is a
stand-alone tool containing 32 commands (procedures) and provides either menu or command line access
to all of the functions of AdaManager. It is particularly valuable for constructing databases. AdaQuest
can be used to define databases, tables, types, and columns, as well as performing administrative tasks.
Although it is easy to use, it does require a knowledge of AdaManager. Documentation is complete, log-
ically arranged, and clearly written; its high quality is consistent with that supplied with other AdaSoft
products [29].

The final database interface discussed here is the construction of an interface between Ada and the
dbVista III package now in use fro PC-targeted, THAMA-spon.ored software. WES has developed such
an interface, and it is currently being tested. It is not anticipad that dbVista will be widely used with
Ada, particularly for developing new software, but the interface may be valuable for converting some
existing programs to Ada when such software is being substantially modified. The Ada interface
modules and a user guide are available from WES.

Analysis and Design Aids. Rational Rose, from Rational, is a graphical CASE tool which supports
object-oriented analysis and design. It is available on IBM RS/6000 and Sun SPARC workstations as a
stand alone product; X terminals attached to those systems may also access Rose. It does not require the
Rational Environment. It allows developers to create class diagrams which serve as blueprints of high
level system abstractions, specify class attributes which provide detailed design information, and illus-
trate the design through object diagrams of system mechanisms. Rose uses the Booch notation [20]; it
enforces the notation's syntax and verifies its semantics by prohibiting occLr-ences of multiple inheri-
tance, as well as by checking for class visibility and multiple class relationships. All of the underlying
information is represented in ASCII, thus it allows developers to use their current source code control
system to manage versions of the design just as they manage versions of the code. Rose is customizable
and extensible; users may modify menus and integrate the product with other CASE tools. There are
several possibilities for output: printed PostScript, encapsulated PostScript file, or FrameMaker-
compatible file. A floating license which allows a single copy of Rose to be shared among multiple users
is available for $3,995.

Like Rose, Teamwork/Ada is also based on the X Window System. Developed by Cadre Technolo-
gies, it is available on RISC workstations, including those from DEC. HP, IBM, and Sun, and also on X
terminals connected to those hosts. The centerpiece of this product is the Ada Structure Graph (ASG)
editor, which allows developers to create, view, and change Ada design components in a graphical
manner using the Buhr notatic- [21]. Using the ASG, it is possible to display a diagram in several win-
dows, thus allowing detailed editing in a close-up view and simultaneous visualization of the global
impact of a modification in a high-level view. Teamwork/Ada automates the transition from design to
implementation through integration with Cadre's Ada Source Builder (ASB) and Design Sensitive Editor
(DSE). When used with the ASG, these two tools enforce consistency between the design and the coded
implementation, prohibiting changes that would make the design obsolete. The ASB analyzes the output
of the ASG and produces Ada code which corresponds to the design and contains "code frames." Imple-
mentation details may then be inserted into the generated code using the DSE, but only within the code
frames. The DSE automatically detects Ada syntax errors, and may be configured to emulate other edi-
tors and to enforce site-specific coding standards. Existing Ada code may be processed using the ASG
Builder which creates ASGs from source code in order to facilitate reuse, reengineering, and mainte-
nance. Information produced during this design process is saved in a project database and may then be
accessed by the Document Production Interface, Teamwork/DPI, to produce documentation compliant
with DoD-STD-2167A. Teamwork/Ada is part of Cadre's Teamwork environment which includes facili-
tes for simulation of software systems, construction of real-time systems, modeling of information, and

19

__\ , /



THE CORPS TRANSITION TO ADA

communication with widely-used DBMSs (e.g., Ingres, Oracle, and Sybase). If the Corps decides to use
the Rational Environment, Teamwork's interface to that system would make it a powerful addidlon to the
coding cnvironment. If the Corps decides against Rational, Teamwork, along wi•h an appropriate compi-
lation system, is surely one of the top contenders for an integrated development environment.

Metrics Collectors. An important aspect of the development process is quality control. Unless data
is obtained to measure program quality, this will be difficult, if not impossible. One such tool for gather-
ing these data is AdaMAT, from Dynamics Research Corporation. This is a static source code analyzer
which uses DIANA-based metrics to measure management concerns such as reliability, portability, and
maintainability, as well as software engineering concerns such as code simplicity, modularity, self-
descriptiveness, clarity, and independence. These scores are calculated by calculating the ratio between
the number of adherences to a particular guideline and the total number of adherences and nonadher-
ences. AdaMAT is useful in many activities throughout a project, including design assessment, code
walk throughs, error prevention and discovery, system installation and checkout, and maintenance.

How to Proceed

The use of Ada offers many advantages over other languages. Many of its features were specifically
intended to support good software engineering practice; examples include its library consistency require-
ment its extremely thorough compile time checking. Its technical advantages are clearly seen and other
languages, e.g., Turbo Pascal, Modula-2, and C++, have attempted to incorporate at least some of its
features. Since Ada is more advanced than many other language systems, it requires a higher level of
sophistication for optimum use. It must be systematically introduced or chaos can result.

A well conceived plan should be followed which will promote a smooth transition to Ada without
false starts and wasted effort. The following paragraphs propose an outline of this plan. Throughout the
transition, the key to success will lie in the education of the personnel involved. Management must
recognize that several years will elapse before development staff acquire the expertise and fully adopt the
techniques that will produce the dramatic cost savings advertised by various Ada proponents. Develop-
ment staff members must realize that formal training is only the first step in their personal transition to
Ada, and that they must understand and then put into practice not just new programming language syn-
tax, but a new development philosophy as well. Furthermore, project sponsors must understand that
software engineering is engineering. If they were sponsoring a civil works project, such as the constric-
tion of a suspension bridge, they would not show up at the site a month after project initiation and ask
what percent of the bridge has been completed or ask for a prototype bridge to drive over in order to
determine its "look and feel." They must understand that the new development process to be instituted
as part of this transition will involve more initial planning and less time spent coding and that the result
will be a product which is more reliable and easier to maintain. Finally, everyone should realize that
some aspects of the transition will be perpetual. Specifically, procedures and techniques must periodi-
cally evaluated and if they have proven ineffective, or if new technology has rendered them obsolete,
then they must be changed.

It is imperative that several steps be immediately taken to begin the transition to use of Ada. If they
are not, the first several projects implemented in Ada will be delayed while developers acquire expertise
in the Ada language, object-oriented design, and software engineering methods and tools. These near-
term actions, to be completed during the first year of the transition, include:

1. Acquisition of Ada compilers. Alsys FirstAda seems to be a good first choice for PC platforms,
although if an interface to Microsoft Windows is necessary, the Meridian product should be con-
sidered, as well. The Verdix compiler should be viewed as a strong contender for RISC-based
workstations.

20



THE CORPS TRANSITION TO ADA

2. Acquisition of an APSE for PC platforms. The selection of this environment will depend on the
hardware/OS/compiler combination under consideration. For 80X86/DOS/Alsys, the Adam inter-
face bundled with the Alsys compiler is a reasonable, cost-effective choice. For RISC-based works-
tations running UNIX, the situation is similar in that a high-quality APSE is available fromu the com-
piler vendor, this is particularly true of the Verdix compiler and its associated VADSpro program-
ming environment.

3. Initiation of an Ada training sequence. Many training vendors, e.g., EVB, Fastrak Training, and
Texel, have courses that cover the topics listed earlier. One should be selected and an initial group
should begin a formal training sequence.

4. Selection of potential Ada experts. These individuals should immediately be assigned the tasks
noted earlier, specifically those associated with reviewing current Ada technology and with assisting
other developers in making the transition.

5. Acquisition of Ada reference materials. These include the serials noted previously as well as items
from the bibliography.

6. Adoption of software engineering methodology as standard practice. This includes, among other
things, development of formal design specifications, application of object-oriented design tech-
niques, adoption of and adherence to an Ada style guide, code walkthroughs, thorough testing, and
collection of software and productivity metrics for individuals as well as for the group as a whole.

7. Decide whether or not to obtain the Rational Environment. This is an important initial decision on
which many future decisions will depend, including selection of hardware, compilers, and CASE
tools. Furthermore, if the decision is positive, then time must be allowed to train personnel in the
use of the system.

Other tasks are equally important but need not be accomplished right away; work on them should
begin during the first year of the transition and be completed by the end of the second. Note, however,
that some of them are ongoing activities.

1. Continuous investigation of available Ada technology. All of the areas discussed in this report
require constant monitoring. Knowledge of advances in software engineering methodologies, CASE
tools, and object-oriented technology, progress at Government laboratories, and status of other
large-scale Ada projects will all be useful in current development efforts.

2. Adoption of a reuse policy. The Ada experts noted above must investigate existing Government
software repositories to determine what components will be useful to current projects. A local reuse
library must be established.

3. Acquire one or more RISC-based UNIX workstations. These platforms support better CASE tools
and provide a development environment with more functionality. Appropriate tools should be pur-
chased simultaneously, e.g., Cadre's Teamwork, liP's SoftBench, IDE's Software Through Pictures,
and Rational Rose. These should be tested on a small project in a prototype fashion and the most
promising product employed on subsequent projects.

4. Encourage employees to stay current in the field. As part of their job assignment, employees should
periodically review books, journal articles, case studies, or products and prepare a review; this could
then be shared with the rest of the staff in a short one-hour presentation. If this were scheduled once
a month, perhaps as a brown-bag luncheon/seminar, then it would not be burdensome to the
presenter or the staff.

21

"I' .•'•"• /' I ,"



THE CORPS TRANSITION TO ADA

5. Review progress in making the transition. This involves evaluation of all of the short-term steps
noted above and making any necessary mid-course corrections. Specifically, attention should be
paid to modification of estimating models based on experience with Ada to date, evaluation and pos-
sible revision of the training program, review and enhancement of software enginipring techniques
and tools, and updating library holdings on Ada and software engineering,

6. Make plans for future efforts. Plans should be made to address the following issues: use of code
generators, applications of artificial intelligence in the project's functional domain, and the transi-
tion to Ada 9X.

7. Plan to participate in an SEI Software Process Assessment. This accreditation procedure evaluates
an organization's state of software development practice based on the SEI Capability Maturity
Model. This scale of this model's evaluation ranges from 1, which describes an ad hoc, chaotic
situation to 5, which describes a software development approach that is repeatable, defined,
managed, and optimizing. This is possibly the most important of all the recommendations.

The mandate to use Ada should be viewed as an opportunity for the Corps to assume a leadership
role within the Army in the area of software development. The Corps of Engineers has a long history of
engineering many things well, and there is no reason why the Corps should not engineer software well,
too. Hopefully this report has provided initial guidance which will help make that goal a reality.

L.

Ii•



APPENDICES. .

APPENNDICES

23



Appendix A: DoD Directive 3405.1

Department of Defense
DIRECTIVE

April 2, 1987
NUMBER 3405.1

ASD(C)

SUBJECT: Computer Programming Language Policy

Refe-c ces: (a) DeD Instruction 5000.31, "Interim List of DoD Approved Righer
Order Programming Languager (HOL)," November 24,1976
(hereby canceled)

(b) DoD Directive 7740.1, "DoD Information Resources Management
Progr=m," June 20, 1983

(c) DoD Directive 5000.1, "Major System Acquisitions," March 12,
1986

(d) DoD Directive 5000.29, "Management of Computer Resources in
Major Defense Systems," April 26, 1976
(e) through (j), see enclosure 1

A. PURPOSE

This Directive supersedes reference (a) and supports references (b) and
(c) by establishing policy for computer programming languages used for the

development and support of all DoD software.

B. APPLICABILITY AND SCOPE

This Directive:

1. Applies to the Office of the Secretary of Defense (OSD), the Military
Departments (including the National Guard and Reserve), the Organization of
the Joint Chiefs cf Staff (OJCS), thL% Unified and Specified Commands, the
Inspector General of the Department of Defense (IG, DoD), the Defense
Agencies, and nonappropriated fund activities (hero-after referred to
collectively as "DoD Components").

2. Covers all computer resources managed under reference (d) or DoD
Directive 7920.1 (reference (e)).

3. Need not be applied retroactively to systems that have entered
full-scale development or have passed Milestone I1 of references (c) and (e),
and for which a documented language commitment was made in compliance with
previous policy.

C. DEFINITIONS

Special terms used in this Directive are explained in enclosure 2;
otherwise, refer to the "American National Dictionary for Information
Orocessing Systems" (reference (f)).

D. POLICY

24



Appendix A: DoD Directive 3405.1

It is DoD policy to:

1. Satisfy functional rc.uirer-nts, enhance mission performance, and

provide operational support through the use of modern software concepts,
advanced software technology, software life-cycle support tools, and standard
programming languages.

2. Achieve improvements in DoD software management through the
implementation of processes for control of the use of higher order languages,
including specification of standards and waiver procedures.

3. Limit the number of programming languages used within the Department
of Defense to facilitate achievement of the goal of transition to the use of
Ada* (reference (g)) for DoD software development.

a. The Ada programming language shall be the single, common, computer
programming language for Defense computer resources used in intelligence
systems, for the command and control of military forces, or as an integral part
of a weapon system. Programming languages other than Ada that were authorized
and being used in full-scale development may continue to be used through
deployment and for software maintenance, but not for major software upgrades.

b. Ada shall be used for all other applications, except when the use
of another approved higher order language is more cost-effective over the
application's life-cycle, in keeping with the long-range goal of establishing
Ada as the primary DOD higher order language (ROL).

c. When Ada is not used, only the other standard higher order pro-
graming languages shown in enclosure 3 shall be used to meet custom-developed
procedural language programcing requirements. The use of specific ROL's shall
be based on capabilities of the language to meet system requirements. Guidance
in selecting the appropriate ROL to use is provided in NES Special Publication
500-117 (reference (h)).

4. Prefer, based on an analysis of the life-cycle costs and impact, use
of:

a. Off-the-shelf application packages and advanced software technology.

b. Ada-based software and tools.

c. Approved standard ROL's.

5. Consider the potential impact on competition for future software
and/or hardware enhancements or replacement when selecting Defense, public
domain, or commercially available software packages, or advanced software
technology.

6. Use life-cycle management practices, as required by DOD Directive
7920.1 (reference (e)) and DoD Directive 5000.29 (reference (d)), for the
development, support, and use of software, whether custom-developed or
commrcially acquired.

7. Reduce software obsolescence and the cost of software maintenance

25

. *MM



Appendix A: DoD Directive 3405.1

through use of approved programming languages and appropriate advanced
software technology during all phases of the software life-cycle.

E. RESPONSIBILITIES

1. The Assistant Secretary of Defense (Comptroller) (ASD(C)) and the
Under Secretary of Defense (Acquisition) (USD(A)) shall jointly:

a. Ensure that the policy and procedures in this Directive are
implemented.

b. Assign responsibility to a specific DoD Component to act as the DoD
language-control agent for each DoD-approved standard ROL.

c. Process nominations for changes to the list of approved HOL's.

2. The Assistant Secretary of Defense (Comptroller) shall:

a. For automated information systems, establish programs, as
appropriate, for the enhancement of the software engineering process and the
transition of such technology from the marketplace and research programs to
application within general purpose automated data processing systems.

b. Define research and development requirements for automated
information systems after consultation with Dol Components and provide etch
requirements to USD(A) for inclusion in their research and development Frogram.

3. The Under Secretary of Defense (Acquisition) shall:

a. Establish and support a software and information technology
research and development program that is responsive to the identified needs.

b. Manage the DoD Ada program and maintain and Ada Joint Program
Office (AJPO) to oversee the maintenance of the Ada language and the
insertion of Ada-related technology into the Department of Defense.

c. Establish research programs, as appropriate, for the enhancement
of software engineering technology and transferring such technology to use in
intelligencd systems and systems for the command and control of military
forces, and to computer resources that are an integral part of a weapon system.

4. The Read of Each DoD Component shall:

a. Implement and execute internal procedures consistent with the
policy and procedures in this Directive.

b. Designate a language-control agent for each approved HOL for which
the DoD Component is assigned responsibility and ensure compliance with the
procedures in enclosure 4.

c. Institute a process for granting waivers to the use of approved
ROL's in accordance with section F., below.

d. Specifi. ally address in the Component's overall computer resources

26

~~~~~~7 ..... .. ......" - • ! •"• • • •,o • :, •• .,•- :,•

4F 77/

,.-7 a 7"

Appendix A: DoD Directive 3405.1

planning process:

(1) The use of appropriate advanced software technology for
developing new applications and technological upgrades of existing systems.

(2) The current use of assembly languages, nonstandard HOL's,
vendor extensions, and enhancements of standard HOL's, and actions taken to
ensure that such use is minimized.

a. Establish a program for evaluating, prototyping, and inserting
advanced software technology into the development, modification, and
maintenance process, and hold operational software managers accountable for
investment in and migration to advanced software technology for their
particular eivironment.

f. Establish and maintain training, education, and career development
programs that will ensure that DoD personnel are fully able to use new
advanced software technologies.

F. WAI1ER PROCEDURES

1. Waivers to the policy in subsection D.3., above, shall be strictly
controlled and closely reviewed. Authority for issuing waivers is delegated
to each DoD Component.

a. Each proposed waiver shall contain full Justification and shall,
at a minimum, include a life-cycle cost analysis and a risk analysis that
addresses technical performance and schedule impact. Each waiver granted by
the DoD Component shall apply to only one system or subsystem.

b. Justification for granted waivers shall be provided to USD(A) or
ASD(C) within the scope of their individual responsibilities, as periodically
requested for review.

2. A waiver NEED NOT be obtained for use of:

a. Coimrcially available off-the-shelf applications software that is
not modified or maintained by the Department of Defense.

b. Commercially available off-the-shelf advanced software technology
that is not modified or maintained by the Department of Defense.

c. Computer programming languages required to implement
vendor-provided updates to co¢Ircially supplied off-the-shelf software. Use
of such languages shall be restricted to implementing the vendor updates.

3. A waiver IS REQUIRED for use of unmodified Defense or public domain
software that does not conform to the language requirements of subsection
D.3., above. Maintenance of the software shall be specifically addressed in
the waiver request to include life-cycle maintenance costs and the
availability of source codes and necessary software tools.

G. EFFECTIVE DATE AND IMPLEMENTATION

27

"I I' ;' " ..

_ I -,.. • ,.. • .

Appendix A: DoD Directive 3405.1

This Directive is effective i4ediately. Forward one copy of implementing
documents to the Assistant Secretary of Defense (Comptroller) and one copy to
the Under Secretary of Defense (Acquisition) within 120 days.

William H. Taft, IV
Deputy Secretary of Defense

Enclosures - 4
1. References
2. Special Terms and Definitions
3. DoD-Approved Higher Order Programming Languages
4. Procedures for Controllong Higher Order Languages (HOL)

*Ad& is a Registered Trademark of the U.S. Government (Ada Joint Program

Office).

28

V11P1 i"

Appendix A: DoD Directive 3405.1 (Encl 1)

REFERENCES, continued

(e) DoD Directive 7920.1, "Life Cycle Management of Automated Information
Systems (AIS)," October 17, 1978

(f) National Bureau of Standards (NES) FIPS Publication 11-2, "American
National Dictionary for Information Processing Systems," May 9, 1983

(g) ANSI/MIL-STD-1815A-1983, "Ada Programing Language," February 1983
(h) National Bureau of Standards Special Publication 500-117, "Selection and

Use of General Purpose Programming Languages," October 1984
(i) DoD 4120.3-M, "Defense Standardization and Specification Program Policies

Procedures and Instructions," August 1978, authorized by DoD Directive
4120.3, February 10, 1979

(j) DoD Directive 5010.19, "Configuration Management," May 1, 1979

/

* I-

-9

Appendix A: DoD Directive 3405.1 (Encl 2)

SPECIAL TERMS AND DEFINITIONS

1. Advanced Software Technology. Software tools, life-cycle support environ-
ments (including program support environments), nonprocedural languages,
modern data base management systems, and other technologies that provide
improvements in productivity, usability, maintainability, portability, etc.,
over those capabilities co- only in use.

2. Automated Information Systems. A collection of functional user and
automatic data processing personnel, procedures, and equipment (including
automatic data processing equipment(ADPE)) that is designed, built, operated,
and maintained to collect, record, process, store, retrieve, and display
infozmation.

3. Major Software Upgrade. Redesign or addition of more than one-third of
the software.

30

Appendix A: DOD Directive 3405.1 (Encl 3)

DoD-Approved Higher Order Programming Languages

I I I iIndustry I
I Language IStandard Number I DoD Control Agent I Control I
I I I lAgent II
------------- I---
I Ada I ANSI/MIL-STD-1S15A-1983 I Ada Joint Programi ANSI

I (rips 119) lOfficeII

I C/AThAS IIEEE STD 716-1985 I Navy I IEEE

I COBOL I ANSI X3.23-1985 (TIPS 21-2) 1 air Force I ANSI I
--
jIO4S-234 I NAVSE-A 0967LP-598-2210-1982 I Navy IN/A
--

I c(s-2Y I NAVSEA Manual 34-5049, 34-50451 Navy IN/A
I 134~-5044-1981III

--
I TORTRAN I1 ANSI X3.9-1978 (TIPS 69-1) 1 Air Force I ANSI I
--

I JOVMA (373)1I MIL-STD-1589C (USAF) IAir Force I N/AI

I Minimal I ANSI X3.60-1978 (TIPS 68-1) IAir Force IANSI I
I BASICI II
--
I PASCAL I ANSI/IEEE 770X3.97-1983 IAir Force IANSI

I I ~(FrPips10)III
--
I SPL/1 I SPL/1 Language Reference I Navy I N/AI

I I ~Manual, Intezmtrics ReportIII
I 131~o. 172-1III

--
Note. See lIES Special Publication 500-117 (reference (h)).

31

Appendix A: DoD Directive 3405.1 (Encl 4)

PROCEDURES FOR CONTROLLING HIGHER ORDER LANGUAGES (ROL)

1. All Ad& compilers that are used for creation of software to be
delivered to or maintained by the Government shall be formally validated in
accordance with procedures and guidelines set by the 1,7-O.

2. Each DoD-approved ROL shall be assigned to a DoD language-control
agent, as shown in enclosure 3, who shall:

a. Have the authority and responsibility for proper support of all
language-control activities needed to provide for necessary modification and
improvement of the assigned HOL. The agent shall operate in accordance with
DoD 4120.3--M (reference (i)).

b. Provide configuration control for DoD ROL's in accordance with
DoD Directive 5010.19 (reference (j)). For HOL's controlled under industry
(e.g.,Institute for Electrical and Electronic Engineers or American National
Standards Institute) procedures, the agent shall represent the Department of
Defense to the controlling body.

c. Maintain a single standard definition of the assigned ROL and make
this definition document available as a Federal, DoD, military, or adopted
industry standard. The agent shall also gather and disseminate appropriate
information regarding use of the HOL, its compilers, interpreters, and
associated tools.

3. A DoD Component may nominate a language for removal from the list
of approved languages by submitting a justification document, which presents
the rationale for the proposed deletion and an impact analysis, to the
ASD (C), who will coordinate it with USD (A).

4. A DoD Component may also nominate a language for inclusion on the
list of approved languages by submitting a justification document to the
ASD(C), who will coordinate it with USD(A). The justification document
shall include the following:

a. A detaiý.ad rationale for using the language, including how the
candidate language meets specific DoD requirements that are not satisfied by
the approved languages.

b. A description of the language and the environment and a detailed
unambiguous specification of the language.

c. An economic analysis of the impact of the language over its
expected life-cycle.

d. A detailed plan for implementing and supporting the language,
including identification of the DoD Component that will accept designation as
control agent for the language.

32

Appendix B: HQDA LTR 25-90-1

DEPARTMENT OF THE ARMY
WASHINGTON, D.C. 20310

*EQDA LTR 25-90-1
*This letter supersedes HQDA Letter 25-88-5, 21 June 1988.

SAIS..ADO (14 May 1990) 16 July 1990

Expires 16 July 1992

SUBJECT: Implementation of the Ad& Programming Language

SEE DISTRIBUTION

I. Purpose. This letter amplifies Army policy and guidelines
for implementing the Ad programming language as required by DOD
Directives 3402.1 and 3405.2

2. References. Related publications are listed below.

a. DOD Directive 3405.1, 2 April 1987, Computer Programming
Language Policy.

b. DOD Directive 3405.2, 30 March 1987, Use of Ada in Weapon
Systems.

c. ANSI/MIL-STD-1815A-1983, Ada Programming Language,
22 January 1983.

d. HQDA message, 031309Z August 1987, SQL Relational Data
Base Language Standard.

3. Explanation of abbreviations. Abbreviations used in this
letter are explained in the glossary.

4. Applicability and scope. This letter applies to all computer
resources used to develop, modify, maintain, or support Army
software. These resources include but are not limited to
automated information systems, intelligence systems, tactical
sya :emrs, and weapon systems that have infozmation resources such

as computers as part of, or embedded in, ýhe host system. They
also include but are not limited to systrims developed by or for
major commands, program executive officers/progran managers,
central design activities, combat developmant faciities, and
laboratories. Except in instances noted paragraph Ga, this
policy needs not be applied retroactively o systems that have
entered full-scale development or deplo t phases of the life
cycle, or for which a waiver has been appr ved by Headquarters,
Department of the Army (HODA). p

5. Responsibilities

a. The Director of Information Systems for Ccunand, Control,
Communications, and Computers (DISC4) will--

33

Appendix B: HODA LTR 25-90-1

(1) Act as the Army Ada Executive Official and serve as
the Army focal point for all Ada program activities. The DISC4
will review and approve all requests for exceptions or waivers

(2) Develop and execute the policy and plans necessary to
ensure successful Army-wide transition to, and implementation of,
the Ada language and its associated technology, including
processes for software engineering and software engineering
project management.

b. Major Army command (MACOM) commianders and/or program
executive officers (PEOs) will--

(1) Develop appropriate policy to support an Ada
implementation plan.

(2) Develop, submit, maintain, and execute an Ada
implementation plan in the format shown in Appendix A. The
implementation plan will be in two parts (systems and
organizational) and will be submitted/updated on an annual basis.
The systems portion will address all major systems (such as
mission critical computer resources (MCCR), Standard Army
Management Information System (STAMIS), command standard, command
unique, and 'multi-user/location) and those systems that provide
input to or receive output from these systems. This portion will
also include a schedule for transition to Ada, as appropriate.
The organizational portion will address planning, training, and
support available for migrating to Ada technology.

(3) Maintain, as a PEO, an Ada implementation plan for
those systems under their purview and ensure that assigned
program/project/product managers (Pms) implement Ada in
accordance with Army policy.

(4) Ensure that software designers/developers are fully
trained in the use of the Ada language, technology, and software
engineering processes, with particular emphasis on developing
components that are tested, validated, and documented for
inclusion in reuse libraries.

(5) Ensure that military and government civilian personnel
in all software skill groups are aware of new advanced software
technologies for possible implementation. \

(6) Develop procedures and guidelines that address good
software engineering principles that, as a minimum, address
software reuse, portability, and management controls.

c. Heads of HQDA activities will develop, maintain, and
submit implementation plans to the Department of the Army
Information Manager (DAIM) for execution. The HQDA staff
agencies and their field operating agencies (FOAs) are considered
collectively as a MACOM for execution of this lotter.

34

Appendix B: HQDA LTR 25-90-1

6. Policy.

a. The Ad& programming language as defined in ANSI/MIL-STD-

1815A-1983 is the single, comon, high order computer programming
language for all computer resources used in the Army unless
another language is mandated by a higher level directive.
Approvals to use another approved standard high order language
(HOL), as defined in DOD Directive 3405.1, will only be granted

when the use of the other language is estimated/calculated to be
more cost effective or more operationally effective over the
applications' life cycle. Programming languages other than Ada
that were authorized and are being used in full-scale development
of these systems may continue to be used through deployment and
for software maintenance. In those specific instances where Army
systems must interface with non-Department of Defense (DOD)
agencies, such as the Central Intelligence Agency (CIA) and
Federal Burnau of Investigation (FBI), Ada is preferred but not
required. Existing software need not be rewritten in Ada solely
for the purpose of converting to Ada. All systems, however, will
transition to Ada when the next hardware/software upgrade
requires modificatio•n of more than one-third of the existing
code over the system life cycle, unless a waiver is obtained.

b. All requests for exceptions to use another approved HOL
will have fully documented rationale. The requests will address
technical feasibility and life-cycle cost analysis or cite the
applicable higher level directive.

c. When software components for Army systems are being
acquired and/or developed, good software engineering principles
will be exercised to facilitate the use of ads. The approach to
acquiring and/or developing software components will be based on
an analysis of life-cycle costs and operational efficiency.
Major considerations should he:

(1) The use or modification of existing Ada software.

(2) The use of off-the-shelf software and advanced
software technology, implemented in other than Ada, for which no
modification or Government maintenance is required. Advanced
software technology includes software tools, life-cycle support
environments, nonprocedural languages, and modern database
management systems (DBMSa) that provide improvements in
productivity, usability, maintainability, and portability. A
waiver is not required for non-developmental item (NDI) software
application packages and advanced software technology that are
not modified by or for DOD. In those instances where existing
software requires modification to ensure the total system meets
requirements, a waiver is required if more than one-third of the
source code is being changed and the changes are not written in
Ada.

(a) Regarding the use of fourth generation languages
(4GLs), the following apply:

35
1... r.

S i' • "•: ...•/,;,

. /- " ,

Appendix B: HODA LTR 25-90-1

1 The approved ad hoc query and Database
Management System interface language for Army systems is the
Structured Query Language (SQL), Federal Information Processing
Standard (FIPS) 127. In accordance with HQDA message, 031309Z
August 1987, SQL will be used for relational databases as the
interface between programs and the supporting DBMS. A waiver is
not required for any system using an SQL-compliant DBMS in
conjunction with Ada.

2 Non-SQL-compliant 4GLs may be used without the
requirement for a waiver to develop prototypes during
requirements definition and in short term/ad hoc applications
(less than 3 yoars' useful life). In no case will a non-Ada
prototype be fielded during system implementation nor will an ad
hoc application exceed the time limitation without an approved
Ada waiver.

(b) With the exception noted in subparagraph 2, above,
4GLs will not replace the requirement for, or the use of , Ada.

(3) The development of new Ada software. If source code
generators are used in the development of Ada software, they must
produce an Ada source code that complies with ANSX/MIL-STD-1815A-
1983.

(4) The impact on certain critical processes that
currently cannot be performed efficiently in an HOL due to timing
and/or sizing constraints. These functions, requiring very fast
or tightly controlled computer processing, are more appropriately
written at the machine level (for example, micro-code/assembly
language). In such instances, a waiver is not required if the
ration of non-Ada source code to Ada source code (terminal
semicolon count) does not exceed 15 percent. An Ada waiver is
required if the total machine level code exceeds 10,000 lines.

(5) The requirement that projects use a validated Ada
compiler, as defined by the Ada Joint Program Office (AJPO) Ada
Compiler Validation Procedures, at the start of formal testing.
Providing no changes are made to the compiler, it may be used for
the balance of the project;s life cycle even though its
associated validation certificate may have expired. If the
compiler is altered, then a validation is necessary. -\

d. If system requirements cannot be satisfied by paragraph
6c, then a waiver approval is required from HQDA, DISC4
(SAIS-ADO) to:

(1) Develop Army software in another computer langua.e.

(2) Acquire off-the-shelf software, implemented in othe-
than Ada, which requires Government maintenance or modification
of more than one-third of the total system software.

(3) Implement a system/subsystem in a 4GL.
i.

36

" T - '. ,-

\N

Appendix B: HQDA LTR 25-90-1

(4) Develop an Army system, with severe time and/or size

constraints, in which the machine level to Ada source code ratio
exceeds 15 percent or the total machine language code exceeds
10,000 lines.

e. In all instances, however, anyone requesting a waiver must
demonstrate that the software strateg; is more cost-effective or
more operationally effective over the system life and must
include a statement of maintainability from the responsible
software maintainer.

7. Waivers

a. with the e-ception noted in paragraph 6c, a waiver must be
obtained to develop any non-Ada software.

b. Justification must address the following issues:

(1) The waiver request will provide adequate technical
description to address limitations, documentation, portability,
maintainability, and usability of the proposed software language
or package.

(2) The waiver request will provide complete life-cycle
economic rationale for both Ada and the requested language. For
tactical systems, intelligence systems, and embedded weapon
systems, the waiver request must also include a risk analysis
that addresses technical performance and schedule impact.

c. A waiver request for all new initiatives must be approved
prior to Milestone I approval. Prototypes may use advanced --

software technology (such as 4GLs) in accordance with paragraph
6c(2). However, sunk costs for a non-Ada prototype will not be
considered Justification for a waiver.

d. an existing system undergoing modification, as defined in
paragraph 6a, must have received a waiver prior to system
redevelopment regardless of the cost.

e. The long-term costs of supporting programers,
environments, and software code for diverse languages will be
closely scrutinized when waivers are considered.

f. Waivers will apply only to the specified system or
subsystem identified.

g. Waiver processing procedures are as follows:

(1) When there is a PE0/PM structure in place the waiver
request will be submitted from the PM through the PEO (and MACOM.
if appropriate) to the DISC4 (SAIS-ADO). All requests will have
a statement of maintainability from the applicable Life Cycle
software Zngineerin" Center (LCSEC), Software Development Center
(SDC), or Government software engineering organization that will

37

-I'- 7MU

Appendix B: HQDA LTR 25-90-1

be responsible for maintenance of the system.

(2) When there is no PEO/PM structure in place, the waiver
request will be submitted through the cognizant software support
center through the MACOM to the DISC4.

(3) Waivers may be denied at any level but can only be
approved by the DISC4.

8. Effective date and implementation. This directive is
effective i4 diately. MACOM Deputy Chiefs of Staff for
Znfozmation Management (DCSIMs) and PEOs will forward a copy of -

their consolidated initial/updated Ada implementation plans
(appendix A) to HQDA (SAIS-ADO) Washington, DC 20310-0107 by
I October 1990. Updatec to the Ada Implementation Plan are due
on 1 October annually.

N. ,

'S I .

Appendix B: HQDA LTR 25-90-1 (App A)

Appendix A

Ada Systems Implementation Plan

1. XACOK/Installation
2. POC Namm/Telephone ..

3. System Name and Acronym
4. Current Life Cycle Management Phase
5. System Fielding Date
6. ADP Hardware Used
7. Computer Operatinq System
S. Software Languages Used by Subsystem(s) Including Support

Software
a. Name
b. Lines of Code
c. Percent of System

9. Database Management System (DBMS) Used
10. DBMS Interface Technique
11. Program Design Language/Implementation Language
12. Project Approval Documentation (Computer Resources Management

.'lan (CRMP), Acquisition Plans, and sc on, with status)
13. Date Waiver Approved (if applicable)
14. Ada Transition DAtes (start and finish)
15. Planned Upgrade Date(s) (for either hardware or software)
16. Maintenance Responsibility
17. System Docum-ntation Standard Used
18. Transition to Ada (narrative explanation)

Ada Organizational Implementation Plan

1. Human Resources
a. Education and Training of Incumbent Management

and Technical Personnel
b. Accession/Recruitment of Qualified Ada Personnel
c. Ada Support Contractor

2. Resources
a. Financial
b. Technical Status

(1) Ada Support Znvironment (including interface
DOD Standard 1838)

(2) Interface to Operational Environment
(a) DBMS
(b) Operating System
(c) Graphics Support

Glossazy

Abbreviations

ADP -------------- automatic data processing

AJPO ------------ Ada Joint Program Office

39

WE ,

Appendix B: HODA LTR ?5-90-1 (App A)

ANSI ------------- American National Standards Institute

CIA -------------- Central Intelligence Agency

CRMP ------------ Computer Resources Management Plan

DAIM ------------- Department of the Army Information Manager

DBMS ------------- Database Management System

DCSIM ------------ Deputy Chief of Staff for Information
Management

DISC4 ------------ Director of Information Systems for Command
Control, Communications, and Computers

DOD -------------- Department of Defense

FBI -------------- Federal Bureau of Investigation

4GL -------------- fourth-generation language

FIPS ------------- Federal Information Processing Standards

FOA -------------- field operating agency

ROL ------------- high order language

HQDA ------------ Headquarters, Department of the Army

LCSEC ------------ Life Cycle Software Engineering Center

MACOM ------------ major Army command

MCCR ------------ mission critical computer resources

NDI -------------- non-developmental item

PEO -------------- program executive officer

PM -------------- program/project/product manager

POC ------------- point of contact

SDC -------------- Software Development Center

SQL -------------- structured query language

STAMIS ----------- Standard Army Management Information System

BY ORDER OF THE SECRETARY OF THE ARMY:

MILTON H. HAMILTON

40

.=777

Appendix B: HQDA LTR 25-90-1 (App A)

Administrative Assistant to the
Secretary of thi Army

DISTRIBUTION:

HQDA (DACS-ZA)
HQDA (SAFM)
HQDA (SARD)
HQDA (SAAA)
HQDA (SAIS-ZA)
HQDA (SAIG-ZA)
HQDA (DAMI-ZA)
RQDA (DALO-ZA)
HQDA (D;")-ZA)
HQDA (DAPE-ZA)
HQDA (DAEN-ZA)
HQDA (DASG-ZA)
HQDA (NGB-ZA)
HQDA (DAAR-ZA)
AQDA (DAJA-ZA)
HQDA (DACH-ZA)

COMMANDER-IN-CHIEF
U.S. ARMY, EUROPE AND SEVENTH ARMY

COMMANDERS
EIGHTH U.S. ARMY
FORCES COMMAND
U.S. ARMY MATERIEL COMMAND
U.S. ARMY TRAINING AND DOCTRINE COMMAND
U.S. ARMY INFORMATION SYSTEMS COMMAND
U.S. ARMY JAPAN
U.S. ARMY WESTERN COMMAND
MILITARY TRAFFIC MANAGEMENT COMMAND
U.S. ARMY CRIMINAL INVESTIGATION COMMAND
U.S. ARMY HEALTH SERVICES COMMAND
U.S. ARMY SOUTH

SUPERINTENDENT, U.S. MILITARY ACADEMY

Cr:

HQDA (SASA)
HQDA (SAUS)
HQDA (SACW)
HQDA (SAIL)
HQDA (SAMR)
HQDA (SAGC)
HQDA (SAAG-ZA)
HQDA (SALL)
HQDA (SAPA)
HQDA (SADBU)
COMMANDERS

U.S. ARMY MILITARY DISTRICT OF WASHINGTON
U.S. ARMY RECRUITING COMMAND

DIRECTOR, DEFENSE LOGISTICS AGENCY
PROGRAM EXECUTIVE OFFICERS

41

/ -

-~~~~ / ',-' ''

Appendix B: HODA LTR 25-90-1 (App A)

/

COMMUNICATIONS
STANDARD ARMY MANAGEMENT INFORMATION SYSTEM

COMMAND AND CONTROL SYSTEMS
STRATEGIC INFORMATION SYSTEMS
ARMAMENTS

CHEMICAL/NUCLEAR
ARMORED SYSTEMS MODERNTIATION

AVIATION

COMBAT SUPPORT

FIRE SUPPORT
AIR DEFENSE
INTELLIGENCE AND ELECTRONIC WARFARE
STRATEGIC DEFENSE

42

I/

//

Appendix C: The Congressional Ada Mandate

•Appendix C: The Congressional Ada Mandate

This mandate was first included in the fiscal year 1991 appropriations bill (H.R. 5803) for the

Department of Defense. That bill was signed by the President on November 5, 1990, and became Public

Law 101-511. In the FY 1991 act, the section number and wording were:

Sec. 8092. Notwithstanding any other provisions of law, after June 1, 1991, where cost

effective, all Department of Defense software shall be written in the programming language /

Ada, in the absence of special exemption by an official designated by the Secretary of
Defense.

Similar wording was also included in the FY 1992 appropriations bill, Public Law 102-172, enacted

November 26, 1991. There, the mandate can be found in Section 8073. The FY 1991 appropriations bill
originated in the House as H.R. 5803. In the version reported out of the House and sent to the Senate,

this section (originally numbered Sec. 8084) had not contained the proviso "where cost effective"; as
amended by the Senate, the mandate was deleted entirely; when House and Senate conferees met to
reconcile differences in the two versions, they restored the mandate with the "where cost effective" pro-
viso. With this proviso, the mandate was then a part of the final version of the appropriations bill passed

by both houses and signed by the President. The following appeared in House Report 101-822, which
accompanied the original House-passed version of H.R. 5803.

Ada Programming Language. - The Department of Defense developed Ada to reduce the
cost of development and support of software systems written in the hundreds of languages
used by the DOD through the early 1980s. Beside the training economies of scale arising
from a common language, Ada enables software cost reduction in several other ways: (1) its
constructs have been chosen to be building blocks for disciplined software engineering; (2) its f,
internal checking inhibits errors in large systems lying beyond the feasibility of manual
checking; and (3) its separation of software module interfaces from their implementations
facilitates and encourages reuse of already-built and tested program parts. While each of
these advantages is important, Ada's encouragement of software engineering is fundamental.
Software practitioners increasingly believe the application of engineering disciplines is the
only currently-feasible avenue toward controUing unbridled software cost escalation in ever-
larger and more complex systems. In March, 1987, the Deputy Secretary cf Defense man-
dated use of Ada in DOD weapons systems and strongly recommended it for other DOD
applications. This mandate has stimulated the development of commercially-available Ada
compilers and support tools that are fully responsive to almost all DOD requirements. How-

ever, there are still too many other languages being used in the DOD, and thus the cost
benefits of Ada are being substantially delayed. Therefore, the Committee has included a new
general provision, Section 8084, that enforces the DOD policy to make use of Ada mandatory.
It will remove any doubt of full DOD transition to Ada, particularly in other than weapons
systems applications. It will stimulate DOD to move forward quickly with Ada-based
software engineering education and cataloguing/reuse systems. In addition, U.S. and com-
mercial users have already expanded tremendously the use of Ada and Ada-related technol-
ogy. The DOD, by extending its Ada mandate, can leverage off these commercial advances.
Navy Ada is considered to be the same as Ada for the purposes of this legislation, and the

Copyright 1992. IIT Research Institute. All rights assigned to the U.S. Government (Ada Joint Program Office). Permission to
reprint this flyer, in whole or in part, is grantovid ed the AdaIC is acknowledged as the source. If this flyer is reprinted as
part of a published document, please send a courtesy copy of the publication to AdaIC, c/o UT Research Institute, 4600 Forbes
Boulevard, Lmham. MD 20706-4320. The AdaIC is sponsored by the Ada Joint Program Office.

43

Appendix C: The Congressional Ada Mandate

term Ada is otherwise defined by ANSI/MIL-STD-l815. The Committee envisions that the

Office of the Secretary of Defense will administer the general provision in a manner that

prevents disruption to weapon systems that are well into development. The Committee

directs that applications using or currently planning to use the Enhanced Modular Signal Pro-

cessor (EMSP) be exempted from mandatory use of Ada as a matter of policy.

44

Appendix D: Ada vs. C++

Appendix D: Ada vs. C++

On July 9, 1991, the Air Force released to the public a report of a business case they conducted to
determine under what circumstances a waiver to the DoD Ada requirement might be warranted for use of
C++, particuhrly in DoD's Corporate Information Management (CIM) program. The report is titled,
"Ada and C++: A Business Case Analysis."

Since its release the report has received a great deal of publicity in various newspapers and journals.
The information that follows was excerpted from remarks made by Mr. Lloyd K. Mosemann, II Deputy
Assistant Secretary of the Air Force (Communications, Computers, and Logistics), at a press conference
held July 9, 1991.

I. Introduction

There has never been any intention to question DoD's commitment to Ada, but only to identify
when waivers for C++ might be warranted. This business case will support the development of DoD pro-
gramming language policy for information systems and C3 systems.

I might say at the outset that language comparison is not merely a scientific issue: it evokes strong
emotions as well, in that to a certain extent people adopt "favorite' languages for reasons other than
purely dispassionate analysis, much as one might not be able to explain why he/she roots for the Chicago
Cubs or drinks Coke rather than Pepsi. The task is also rendered difficult because there are yet no well-
established and standard methods for conducting such comparisons. For these reasons, we endeavored to
make our study as quantitative as possible, asking the best experts we could find to use a variety of
methods that have historically been used for business analysis in such tasks. We felt that by using a
variety of methods and comparing their results, we would avoid the skewing that might result from the
sole use of a single method.

In our business case, therefore, several different approaches were undertaken to identify, from a
business perspective, when the life cycle cost effectiveness of C++ might be greater than that of Ada.

"* The first, conducted by the Institute for Defense Analyses (IDA), examined quantitatively the avai-
lability of tools and training for the two languages.

"* The second, conducted by the Software Engineering Institute, applied to this problem a quantitative

language selection methodology developed by IBM for the Federal Aviation Administration (FAA).

"* The third, conducted by CTA, Inc., analyzed cost and cost analysis.

"* And the fourth, conducted by the TRW Corporation, applied a standard cost model in depth to both
languages for a typical information systems/C3 project (micro analysis).

"* In addition, the Naval Postgraduate School (NPS) was asked to address the overall policy issue of
Ada, particularly in the context of emerging fourth-generation language (4GL) software technology.

Each of the substudies reached the same conclusion: there are no compelling reasons to waive the Ada
requirement to use C++.

Those who have an amoutt with the Defense Technical Information Center (DTIC) may purchase "Ada and C++: A Business
Case Analysis" from DTIC. Cameron Station, Alexandria, Virginia 2314, 7031274-7633; Order No. AD A253 087; Cost $20.82.
All others may purchase it from the National Technical Information Service (NTIS), U.S. Department of Commerce, 5825 Port
Royal Road, Springfield, Virginia 22161, 703/487-4600; Order No. AD A253 087; Cost $43.00.

45

- -. --

.-_ / . -, ... 7

Appendix D: Ada vs. C++

The business case analysis vLas directed at information systems and C3 systems. However, there is
no reason to believe the results would differ for computer programs embedded in weapons systems.

Let me now summarize for you the salient quantitative results of each study, and I think you will
understand more fully how we arrived at our conclision.

II. Substudy Results.

A. Tools, Environments, and Training: IDA Substudy.

The Institute for Defense Analyses (IDA) collected and analyzed information on the market availa-
bility of commercial- off-the-shelf products available from U.S. sources for Ada and C++ compilers,
tools, education, and training. The study provided a large quantity of demographic data. For example,
there are 28 companies located in the U.S. that have Ada compilers with currently validated status; 18
vendors offer C++ compilers. The Ada compiler vendors are more likely to have been in business five
years or more. Ada "validation" is more rigorous than that of other high order languages: only Ada is
monitored and approved for conformity to a standard, without supersets or subsets, by a government-
controlled process. By contrast, no validation or even a standard of any kind exists for C++, although a
standard by 1994 is expected.

Both languages are supported on PCs and workstations. Ada is also supported on mainframes. Ada,
but not C++, has cross compilation systems.

Ada is supported with program engineering tools. Compiler vendors provide a rich set. Code gen-
erators exist for Ada but none so far for C++. There is considerable variability among C++ products in
language features supported and libraries provided.

Ada is taught in 43 states at 223 universities and 13 DoD installations. C++ is taught in four states
at four universities and no DoD installations. There are more Ada than C++ courses available. The cost
of training is about equal, but Ada course variety is wider.

B. Faceted IBM Language Selection Methodology: SEI Substudy.

The Federal Aviation Administration (FAA) contracted with IBM in the mid-1980s to evaluate high
order languages for use on its Advanced Automation System (AAS) Program. In response, IBM
developed a formal, quantitative faceted methodology comparing 48 language features (criteria) in six
categories. This IBM study concluded that use of Ada was "in the ultimate best interest of the AAS pro-
gram and its goals, and that warrants coping with the temporary risks/problems that loom large in the
near term in order to reap the significant benefits/payoffs over the long term."

Using this same methodology for each of the 48 criteria, the Software Engineering Institute (SEI)
evaluated Ada and C++ for application in information systems/C3 systems. The original FAA weighted
scores for the six criteria categories were as shown in this matrix:

46

7

Appendix D: Ada vs. C++

Category Max. Ada C Pascal JOVIAL FORTRAN

Capability 16.7 6.1 9.6 10.4 7.6 3.9
Efficiency 16.4 8.0 11.8 10.8 11.0 11.1
Availability/Reliability 22.6 21.5 11.6 14.5 15.6 10.3
Maintainability/Extensibility 17.4 14.0 10.2 12.2 6.8 8.3
Lifecycle cost 11.3 8.2 7.4 7.8 4.9 5.2
Risk 15.6 8.8 8.9 7.6 9.6 8.2

Total 100.0 76.6 59.5 63.3 55.5 47.0

The 1991 weighted scores for the six criteria categories were:

Category Max. Ada C++

Capability 16.7 15.3 11.3
Efficiency 16.4 10.7 10.9
Availability/Reliability 22.6 19.1 12.6
Maintainability/Extensibility 17.4 13.6 11.4
Lifecycle cost 11.3 8.4 8.0
Risk 15.6 11.7 9.8

Total 100.0 78.8 63.9

In 1985 Ada was considered considerably more capable than C. Today, the SEI study fobn,•: iiefe is still
a significant difference between Ada and C++, C's successor. The relative effic',>Ž-,,,y of Ada has
improved markedly; Ada still scores significantly higher in availability/reliabiliAty; the Ada advantage in
maintainability/ext.asibility persists; and from a position of parity in 1985, Ada has attained in 1991 a
significant advantage over C++ in lowered risk.

An attachment lists numerous major Ada information systems/C3 systems. It is not widely appreci-
ated that such extensive use is now being made of Ada: in fact, the Ada 9X Project Office reports that the
U.S. Ada market, excluding training, services, and government research/development, now exceeds $1
billion.

C. Macro Cost Analysis: CTA Substudy.

CTA compiled and compared available productivity and cost data of Ada and C++. Much of their
data comes from Reifer Consultants' extensive database, one of the best, largest, and most current pro-
gramming language cost databases now available.

Average productivity across the four domains for which data exists (environment/tools, telecom-
munications, test (with simulators) and other) for both Ada and C++ projects is shown in this matrix.
Note the productivity advantage for Ada:

47

Appendix D: Ada vs. C++

Productivity Number of
(SLOC/MM) Data Points

Norm (all languages) 183 543
Average (Ada) 210 153
Average (C++) 187 23
First project (Ada) 152 38
First project (C++) 161 7

The C++ project data reflected information on 23 projects taken from seven firms who had been using
C++, Unix, and object-oriented techniques for over 2 years. All projects were new developments. Appli-
cation size ranged from 25 to 500 KSLOCs (thousand source lines of code). Average size was about 100
KSLOC.

The average costs across the four domains for both Ada and C++ projects are shown in this matrix.

Cost Number of
($/SLOC) Data Points

Cost (all languages) $70 543
Average (Ada) 65 153
Average (C++) 55 23

Typically, the Ada developments were performed in accordance with military standards and incorporated
formal reviews, additional documentation, and additional engineering support activities such as formal
quality assurance (QA) and configuration management (CM). Most C++ projects are commercial and do
not extensively incorporate such activities. Additionally, on such projects developers are typically inti-
mately involved with users, resulting in considerably less requirements engineering effort. Conse-
quently, applications on which C++ is used are inherently less costly, so that the reported productivity
rates are favorably skewed toward C++.

The average error rates across the four domains for both Ada and C++ projects were:

Integration FQT Number of
Error Rates Error Rates Data

(Errors/KSLOC) (Errors/KSLOC) Points

Norm (all languages) 33 3 543
Average (Ada) 24 1 153
Average (C++) 31 3 23

The integration error rates include all errors caught in test from start of integration testing until comple-
tion of software Formal Qualification Test (FQT). The FQT error rate includes only those errors found
during the FQT process.

A so-called "transition state analysis" performed by Rcifer's group indicates that 26 of the 38 firms
within the Ada database had successfully made the changeover to effective use of Ada, while none of the
7 firms in the C++ database had made the transition. Also, none of the 7 firms were fully using C++'s
inheritance and other advanced features.

The standardization maturity of Ada was found by the CTA to be particularly important. While Ada
has a firm and well policed standard, allowing neither supersets nor subsets, it will be years before a

48

Appendix D: Ada vs. C++

stable C++ language specification is established. New features are being considered for the latest stan-
dard C++ release. Vendors are likely to offer their own enhanced versions of C++ compilers and CASE
tools, complicating portability and reuse.

Finally, the original arguments for establishing a single programming language for military applica-
tions were found to remain. Common training, tools, understanding, and standards simplify acquisition,
support, and maintenance. The study concluded that after maturing for a decade, Ada's benefits have
been proven for all application classes. Ada projects have reported 15% higher productivity with
increased quality and double the average size. Normalizing these data to comparable size projects would
result in an expected Ada productivity advantage of about 35%. Ada should be the near term language of
choice. C++, the study felt, still needs significant maturing before it is a low risk solution for a large
DoD application.

D. Micro Cost Analysis: TRW Substudy.

TRW performed a trndeoff analysis that generalized recent corporate cost analyses on a typical
real-world information systems/C3 systems project. Their study defined a set of maximally independent
criteria, judged each language with respect to those criteria, and then translated those judgments into cost
impacts to emphasize the importance of each cnterion from a lifecycle cost perspective. Results were
translated into perturbations of Boehm's Ada COCOMO cost model.

Rankings of the two languages based on this analysis are shown in this matrix (0 = no support; 5 =
excellent support), followed by a total score, a weighted sum of the rankings based on weights deter-
mined by an expert panel:

Category Ada C++

Reliable S/W Engineering 4.5 3.2
Maintainable S/W Engineering 4.4 3.2
Reusable S/W Engineering 4.1 3.8
Realtime S/W Engineering 4.1 2.8
Portable S/W Engineering 3.6 2.9
Runtime Performance 3.0 3.6
Compile-Time Performance 2.3 3.1
Multilingual Support 3.1 2.4
OOD/Abstraction Support 3.9 4.6
Program Support Environment 4.1 2.1
Readability 4.4 2.9
Writeabiity 3.4 3.5
Large Scale S/W Engineering 4.9 3.3
COTS S/W Integration 2.8 3.6
Precedent Experience 3.6 1.5
Popularity 2.8 4.0
Existing Skill Base 3.0 1.8
Acceptance 2.5 3.3

Total Score for Mgt Info Systems 1631 1324
(Ada score is 23% higher)

Total Score for C3 Systems 1738 1401
(Ada score is 24% higher)

The study concluded that both Ada and C++ represent improved vehicles for software engineering of

49

¾,7,

- ., I - . .. • . , -J

Appendix D: Ada vs. C++

higher quality products. Currently, C++ was estimated to be approximately 3 years behind Ada in its
maturity and tool support. The case study used in this report (the Command Center Processing and
Display System-- Replacement) demonstrated development cost adantages for Ada on the order of 35%
and maintenance cost advantages for Ada on the order of 70% under today's technologies. In the far term
(1994+), the study felt, this Ada advantage might erode to approximately a 10% advantage in develop-
ment costs and 30% in maintenance costs for a typical development intensive system.

The study listed the primary strengths of Ada as its support for realtime domains and large scale pro-
gram development. Its primary weaknesses are its compile-time and runtime efficiency. The primary
strengths of C++ listed were its support for better object oriented design, support for COTS integration,
and its compile-time and runtime efficiency. Its main weaknesses were identified as its support for relia-
bility and large scale program development. In general, the study felt Ada's weaknesses to be solved by
ever-increasing hardware performance .nd compiler technology advancement. C++ weaknesses, on the
other hand, remain to be solved by advances in its support environment.

E. Ada Policy Issues: NI'S Study.

Concurrently with the preparation of this Ada and C++ Business Case Analysis, the Naval Postgra-
duate School (NPS) reported on policy issues on the use of Ada for Management Information Systems.
Their report, an analysis of the need to see Ada in a total and evolving context, is an important vision
statement leading from Ada as the primary third-generation language (3GL) to its conception as the basis
for evolving to higher levels of productivity in so-called 3 1/2 GL and 4GL environments.

Rather than concentrating on programming language selection, the NPS report focuses on and
argues for needed advances in software development technology. In particular, the Report contends,
while traditional factors such as programming language selection, better training, and computer-assisted
software engineering (CASE) tools can enhance productivity modestly, a fundamental change in the
software development paradigm will be necessary to achieve an order of magnitude gain. Such a gain is
possible through use of 4GLs, languages that will ultimately enable the developer to define the complete
design of an application entirely in the 4GL's own high-level specification language. The specification is
then translated automatically by the 4GL into an executable program. When accompanied by a produc-
tive development environment, an evolutionary implementation methodology, and well trained develop-
ment teams, the report asserts, 4GLs can provide a tenfold gain in productivity.

An intermediate step cited by the report in the movement to 4GLs is 3 1/2 GL programming, a term
referring to the extensive use of CASE tools coupled with a high level of code reuse. The 3 1/2 GL
approach requires a strong commitment to codifying and accrediting code modules, to the point where it
becomes easier and more desirable to reuse code than to rewrite it.

Although experience with 4GLs has not yet been extensive (with existing experience limited largely
to specific functional domains such as financial management and transaction processing), 4GLs are
attractive for several reasons. One is their robustness under change: changes made to the application, for
whatever reason, are made at the specification level and then re- translated automatically into executable
code. Another is the facility with which they can be integrated into tightly knit and full-featured
development environments. For these reasons, the report strongly recommends that the DoD discourage
use of traditional 3GL programming and take bold steps to incorporate the 4GL paradigm.

Finally, the report recommends that, given the importance of Ada to DoD software, greater effort
and funding should be provided for the key Ada initiatives: the Ada Technology Improvement Program,
Ada 9X, and Ada education initiatives.

50

---..

A i

Appendix D: Ada vs. C++

Two issues on 3 1/2 GLs and 4GLs related to this business case were outside the scope of the NPS
report. The first of these is that, for the foreseeable future, state-of-the-art limitations will probably keep
4GLs from generating more than half the total code required by most applications. In such cases, where a
substantial amount of 3GL programming will be required to complete application development, use of a 3
1/2 GL approach, rather than a 4GL approach, is preferable.

Another issue outside the scope of the NPS Report was the evaluation of the relative merits of Ada
and C++ as target (output) languages for 4GL application generators. However, as section V.C of the
NPS report points out, a "standard, stable target language portable to a variety of hardware platforms"
with good software reuse and interface definition capabilities is appealing. Although more study of the
characteristics desired in 4GL target languages is warranted, the SEI and TRW substudies suggest no
particular advantage of C++ over Ada in software reuse and interface definition, so there appears no rea-
son to waive DoD's Ada requirement in favor of C++ as a target language for 4GLs.

II. Conclusions. I

All four substudies which specifically compared Aaa and C++ (IDA, SEI, CTA, TRW) report a
significant near term Ada advantage over C++ for all categories of systems. This advantage could be
eroded as C++ and its supporting environments mature over the next few years. On the other hand, as
aggressive overseas Ada initiatives stimulate even wider domestic Ada interest, as Ada
tools/environments further mature, and when the Ada update (Ada 9X) is complete, the balance could tip
further in Ada's favor.

Adding to the case for Ada is the fact that the Ada scoring so well in the business case was Ada's
1983 version, MIL-STD-1815A. Just as C++ incorporates into C certain software engineering concepts
already in Ada (e.g., modularity, strong typing, specification of interfaces), so in Ada update now under-
way will bring into Ada selected features now included in C++. This update, known as the Ada 9X Pro-
ject, is targeted for completion in 1993. The product of extensive community involvement (incl iding the
C3 and MIS communities), Ada 9X will bring to Ada such improvements as decimal arithmetic, interna-
tional character sets, improved input/output, support for calls between Ada and other languages, further
representation specif.cations, and inheritance/polymorphism (popular features of C++). The Ada 9X Pro-
ject Office lists one of the goals of Ada 9X as "to provide all the flexibility of C++ with the safety, relia-
bility, and understandability of Ada 83."

At the same time, Ada 9X has been designed so that neither existing Ada benefits nor performance
will be lost. For example, Ada 9X inheritance will be controlled so as not to reduce lifecycle supportabil-
ity. Some have criticized OOP features such as inheritance as potentially dangerous to DOD software
mission goals (such as safety, reliability, and dependability).

Bjarne Stroustrup himself, the originator of C++, has been quoted as follows: "C makes it easy for
you to shoot yourself in the foot. C++ makes that harder, but when you do, it blows away your whole
leg."

In summary, it is not possible to make a credible case for the existence of classes of "more cost
effective" C++ systems compared to Ada. Business cost effectiveness data collected for this study are
typified by the TRW study's conclusion that Ada provides development cost advantages on the order of
35% and maintenance cost advantages on the order of 70%. In terms of full lifecycle costs, it will be
some time before data exists which could justify a cost savings for C++. Today, there is limited lifecycle
data available for Ada and almost none for C++.

For the foreseeable future, then, this business case shows that there are more than enough reasons
for the DoD to stick firmly with Ada, bot. for all high order language (3GL and 3 1/2 GL) development

All

IIT

Appendix D: Ada vs. C++

and for exclusive use as a target language of 4GL application generators in the large class of applications

for which 3GL code must supplement generated code.

Appendix E: Selected Ada Vendors

Appendix E: Selected Ada Vendors

Company: AdaSoft
Products: AdaManager/AdaQuest, AdaMentor Computer Managed Instruction System, Graphical

Modeling System (SL-GMS), AdaSoft Graphical User Interface (GUI), AdaSoft Textual
User Interface (TUI).

Address: AdaSoft. Inc., 8750-9 Cherry, Lane, Laurel, MD 20707; Voice: (301) 725-7014; FAX:
(301) 725-0980.

Company: AETECH
Products: Ada Workstation Environment (AWE), XAda APSE.
Address: AETECH, 5841 Edison Place, Suite 10, Carlsbad, CA 92008; Voice: (619) 431-7714;

FAX: (619) 431-0860.

Company: Alsys
Products: Ada compilers for a variety of platforms.
Address: Alsys, Inc., 67 S. Bedord St., Burlington, MA 01803-5152; Voice: (617) 270-0030; FAX:

(617) 270-6882.

Company: Cadre Technologies
Products: Teamwork (software engineering tool set).
Address: Cadre Technologies. 222 Richmond Street, Providence, RI 02903; Voice: (401) 351-

CASE; FAX: (401) 351-7380.

Company: Caine, Farber & Gordon
Products: PDIB I , a program design language which aids in the design and documentation of

software. It is available for DOS, UNIX, and VAX platforms.
Address: Caine, Farber & Gordon, Inc., 1010 East Union Street, Pasadena, CA 91106r; Voice: (800)

424-3070; Voice: (818) 449-3070; FAX: (818) 440-1742.

Company: Dynamics Research Corporation
Products: AdaMat.
Address: Dynamics Research Corporation, 60 Frontage Road,'Andover, MA 01810; Voice: (800)

522-7321.

Company: EVB Software Engineering
Products: Complexity Measurement Tool (CMT), GRAMMI (interface builder).
Address: EVB Software Engineering, 5303 Spectrum Drive, Frederick, MD 21701; Voice: (301)

695-6960; FAX: (301) 695-7734.

Company: Fastrak Training
Products: Ada training and consulting.
Address: Quarry Park Place, Suite 300, 9175 Guilford Road, Columbia, MD 21046-1802; Voice:

(301) 924.0050; FAX: (301) 924-3049.

Company: Idaho National Engineering Laboratory
Products: AdaSAGE.
Address: Idaho National Engineering Laboratory, EG&G Idaho, Inc., Special Applications Unit, P.

0. Box 1625, Idaho Falls, ID 83415-1609; Voice: (208) 526-0656.

53

/F
).i •. : i',. ',K-

Appendix E: Selected Ada Vendors

Company: Interactive Development Environments
Products: Software Through Pictures (Ada development environment).
Address: Interactive Development Environments 595 Market Street, 10th Floor, San Francisco, CA

94105; Voice: (800) 888-IDE1; Voice: (415) 543-0900; FAX: (415) 543-0145. -

Company: Irvine Compiler Corporation
Products: ICC Ada, an Ada compiler for the HP 9000 Models 300, 400, 700, and 800, as well as a

number of cross compilers.
Address: Irvine Compiler Corporation, 34 Executive Park, Suite 270, Irvine, CA 92714; Voice:

(714) 250-1366; FAX: (714) 250-0676; E-mail: jkohli@irvine.com.

Company: Meridian Software Systems
Products: The AdaVantage compiler for PCs and some UNIX workstations.
Address: Meridian Software Systems, 10 Pasteur St., Irvine, CA 92718; Voice: (800) 221-2522;

Voice: (714) 727-0700; FAX: (714) 727-3583.

Company: R. & R. Software . -

Products: Ada compilers for PCs.
Address: R. & R. Software, Inc., P. 0. Box 1512, Madison, WI 53701; Voice: (800) 722-3248;

Voice: (608) 244-6436.

Company: Rational
Products: The Rational Environment, Rational Rose.
Address: Rational, 3320 Scott Boulevard, Santa Clara, CA 95054-3197; Voice: (408) 496-3600;

FAX: (408) 496-3636.

Company: P. P. Texel & Company
Products: Ada training and consulting.
Address: Victoria Plaza, Building 4, Suite 9, 615 Hope Road, Eatontown, NJ 07724; Voice: (908)

922-6323.

Company: Verdiv Corporation
Products: self-hosted compilers (VADSSelf), cross compilers (VADSCross), and Ada Programming

Support Environment (VADS APSE).
Address: Verdix Corporation, 14130-A Sullyfield Circle, Chantilly, VA 22021; Voice: (703) 318-

5800.

54

//X li

I2n

Appendix F: Ada-Related Organizations

Appendix F: Ada-Related Organizations

Organization: ACM Special Interest Group on Ada (SIGAda)
Synopsis: ACM, founded in 1947, is the oldest of association for computing professionals. It spon-

sors a number of special interest groups (SIGs) of which SIGAda is one. SIGAda pro-
motes interest in and study of the Ada programming language. Its monthly publication is
Ada Letters ($20/year for ACM members, $42/year others).

POC Mark C :rhardt, ESL, Inc., 495 Java Drive, MS M507, Sunnyvale, CA 94088-3510;
VOICE: ,408) 752-2459; E-mail: gerhardt@ajpo.sei.cmu.edu.

Organization: Ada Joint Program Office (AJPO)
Synopsi.: "The Ada Joint Program Office (AJPO) was formed in December 1980. It is the principal

agent for development, support, and distribition of tools, common libraries, and coordina-
tion of Ada. The AJPO coordinates all Ada efforts within the DoD to ensure the compati-
bility with the requirements of other Services and DoD agencies to avoid duplicative
efforts and to maximize sharing of resources. The AJPO has the responsibility for manag-
ing DoD's effort to implement, introduce, and provide life-cycle support for the Ada pro-
gramming language. The AJPO maintains the language standards, oversees the validation
effort, and coordinates DoD activities with respect to training and education." [281

POC: John Solomond, The Ada Joint Program Office, The Pentagon, Room 3El 14, Washington,
DC 20301-3080; Voice: (703) 614-0208; E-mail: solomond@ajpo.sei.cmu.edu.

Organization: Software Engineering Institute (SEI)
Synopsis: "The Software Engineering Institute (SEI) is a federally funded research and development

center sponsored by the Department of Defense through the Defense Advanced Research
Projects Agency (DARPA). The SEI contract was competitively awarded to Carnegie
Mellon University in December 1984. It is staffed by approximately 250 technical and
support people from industry, academia, and government. Because software has become
an increasingly critical component of U.S. defense systems and because the demand for
quality software produced on schedule and within budget exceeds its supply, the U.S.
Department of Defense established the Software Engineering Institute with a charter to
advance the practice of software engineering. The SEI nission is to provide leadership in
advancing the state-of-the-practice of software engineering to improve the quality of sys-
tems that depend on software. The SEI expects to accomplish this mission by promoting
the evolution of software engineering from an ad hoc, labor-intensive activity to a discip-
line that is well managed and supported by technology." [18]

POC: Customer Relations, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213-3890; Voice: (412) 268-5800.

Organization: Software Technology Support Center (STSC)
Synopsis: "Established by HQ USAF to serve as the focal point for the management of computer

systems support tools, methods, and environments, for Joint Services software activities.
It is an office of the Ogden Air Logistics Center (AFMC), Hill Air Force Base, Utah." [19]POC: Software Technology Support Center, Atn: Customer Service, OO-ALC/TISE, Hill AFB,
UT 84056; Voice: (801) 777-8045; FAX: (801) 777-8069.

55

, - -A... .i

Appendix G: Ada Events Calendar

Appendix G: Ada Events Calendar

The Ada Events Calendar includes information on upcoming Ada conferences, etc. It lists only
those programs with fixed dates, and does not include programs, such as classes, that are scheduled on a
continuing basis. Note, however, that many, if not most, of the conferences listed below are conducted
on an annula basis.

Date: October 5-7, 1992
Event: 6th SEI Conference on Software Engineering Education
Location: Hyatt Islandia Hotel, San Diego, California
Sponsor Software Engineering Institute
Synopsis: The SEI Conference on Software Engineering Education is an annual conference that

brings together educators from universities, industry, and government to discuss issues
related to the content, structure, and delivery of software engineering education. The
conference format includes referred papers, panel discussions, reports, tutorials, and
workshop sessions.

POC: Mary Ellen Rizzo, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213; Tel: 412/268-3007; FAX: 412/268-5758; Internet: mer@sei.cmu.edu.

Date: October 14-15, 1992
Event: ASIS Technical Meeting
Location: Institute for Defer;e Analyses (IDA), Alexandria, VA
Sponsor IDA
POC: Clyde Robey, IDA, Tel:703/845-6666.

Date: October 14-15, 1992
Event: Ada UK International Conference
Location: Britannia International Hotel, London
Sponsor. Ada Language UK, Ltd.
POC: Helen Byard, Administrator, Ada UK, P.O. 322, York YO1 3GY, England; Tel: (UK) 0904

412740;, Fax: (UK) 0904 426702.

Date: November 9-13, 1992
Event: Third Eurospace Ada in Aerospace Symposium
Location: Vienna, Austria
POC: Ms. Rosy Plet, Eurospace, 16 bis, Avenue Bousquet, F-75007 Paris, France; Tel: +33-1-45

55 83 53; Fax: +33-1-45 51 99 23.

Date: November 16-20, 1992
Event: TRI-Ada '92
Location: Orange County Convention Center, Orlando, FL.
Synopsis: The annual TRI-Ada Conference and Exposition is the Ada community's largest and most

prestigious evenL TRI-Ada, as its name implies, reaches out and brings together three
broad bases in the Ada community-government, industry, and academia-with a pro-
gram that covers all issues of importance to Ada interests. The theme for this year's

Copyright 99I2 IT Research Institute. All rights assigned to the U.S. Gove.ue nt (Ada Joint Program Office). Permission to
reprint this flyer, in whole or in pmt, is granted, provided the AdalC is acknowledged as the source. If this flyer is reprinted as
part of a published document, please send a courtesy copy of the publication to AdaIC, c/6 I1T Research Institute, 4600 Forbes
Boulevard, Lanham. MD 207064320. The AdaiC is sponsored by the Ada Joint Program Office.

56

g-A-.-; A

•• ' •"• •• •7 •-'• '•'•' t :'• - •r • •'• • • •'•''•; •; L • "'--

Appendix G: Ada Events Calendar

conference is, "The Business of Ada."
POC: TRI-Ada '92, Danieli & O'Keefe Associates, Inc., Conference Management, Chiswick

Park, 490 Boston Post Road, Sudbury, MA 01776 USA

Date: December 2-3, 1992
Event: NASA/GSFC Software Engineering Laboratory (SEL) 7th Annual Software Engineering

Workshop
Synopsis: The workshop is an annual forum where software practitioners exchange information on

the measurement, utilization, and evaluation of software methods, models, and tools.
There will be a presentation of approximately 15 papers. Papers are being solicited which
include the following topics: experiments in software aevelopment or management;
experiences with software tools, models, methodologies; software measures; software
reuse; software process assessment and improvement.

POC: Mr. Mark Cashion, NASA/Goddard Space Flight Center, Code 552, Greenbelt, MD
20771, USA; Phone: (301) 286-6347; FAX: (301) 286-9183

Date: December 7-11, 1992
Event: Toulouse '92: Fifth International Conference on Software Engineering & Its Applications
Location: Toulouse, France
Synopsis: Methods, tools, standards, and organization are the major aspects of software engineering

covered by the conference. The conference will include tutorials, exhibits, and an indus-
trial forum.

POC: Jean-Cleaude Rault, EC2, 269 rue de la Garenne, F-92024 Nanterre Cedex, France; Tel:
+33-1-47 80 70 00; Fax: +33-1-47 80 66 29

Date: December 8-10,1992
Event: STARS '92
Location: Omni Shoreham Hotel, Washington, D.C.
Sponsors: STARS, Boeing, IBM, Paramax
Synopsis: Megaprogramming concepts, the firm foundation in products, relevant successes, and

upcoming plans will be discussed at the program. Integration of process and reuse within
the Software Technology for Adaptable Reliable Systems (STARS) environment will be
demonstrated. There will be exhibits of megaprogramming work in progress by STARS as
well as affiliates and subcontractors. Evening receptions will facilitate networking with
government and industry leaders.

POC: The STARS '92 Conference Center, 3 Church Circle - Suite 194, Annapolis, MD 21401;
Fax: (410) 267-0332; E-Mail: STARS92-Desk@STARS.Rossyln.Unisys.com

Date: December 10, 1992
Event: Ada's Birthday

Date: March 15-18, 1993
Event: 11 th Annual National Conference on Ada Technology
Location: Williamsburg Hilton and National Conference Centr, Williamsburg, Virginia.
Synopsis: The emphasis for this conference will be software engineering, while continuing to

emphasize Ada as an important building block. Papers on applied aspects of software
engineering and also experimentation and research are being accepted. Presenters must
register for the Conference.

POC: ANCOAT 93, c/o Rosenberg & Risinger, 11287 W Washington Blvd., Culver City, CA
90230, (310) 397-6338

57

V .

Appendix G: Ada Events Calendar

7

Date: March 21-23, 1993
Event: 5th Annual Oregon Workshop on Software Metrics
Location: Silver Falls State Conference Center, Portland Oregon
Synopsis: The Annual Oregon Workshop on Software was founded to allow the interchange of ideas

and experiences between those using metrics and those performing research in the area.
Call for participation is sought from both practitioners and researchers. Participation may
consist of delivering a paper, organizing and leading a panel session, or leading a mini-
tutorial on some aspect of software measurement.

POC: Warren Harrison, Center for Software Quality Research, Portland State University, Port-
land, OR 97207-075 1; (503) 725-3108; warren@cs.pdx.edu

Date: March 24-26, 1993
Event: Second International Workshop on Software Reusability
Location: Lucca, Italy
Sponsors: IEEE Computer Society, ACM SIGSOFT
Synopsis: The themes for this year's workshop include methods, tools and environments, reuse

library methods, generative approaches to reuse, constructive approaches to reuse, theoret-
ical aspects of reuse, organizational and management techniques for implementing reuse,
domain analysis methods and techniques. Attendance is limited to 100.

Date: April 18-23, 1993
Event: Fifth Annual Software Technology Conference
Location: Red Lion Hotel & Salt Palace Convention Center, Salt Lake City, Utah
Sponsors: U.S. Army, U.S. Navy, U.S. Air Force
Theme: Software - The Force Multiplier
Synopsis: The program will include tutorials, vendor demonstrations, presentations, and "birds-of-a-

feather" discussion groups. The theme for this year's conference is, "Software - The
Force Multiplier." General sessions will address management information systems,
embedded computers, and command and control. Proposed topics for presentations
include reuse, environments, Ada implementation, software inspections, change manage-
ment, object oriented programming, automated software process enactment, metrics, re-
engineering, software engineering, software maintenance, DoD software initiatives,
configuration management, and software process improvement.

POC: Dana Dovenbarger, Conference Manager, Software Technology Support Center, 00-
ALC/rISE, Hill AFB, UT 84056; Phone: (801) 777-7411; DSN 458-7411; FAX: (801)
777-8069

Date: May 17-21, 1993
Event: ICSE: 15th International Conference on Software Engineering
Location: Baltimore, MD.
Sponsor. IEEE Computer Society Technical Committee on Software Engineering and ACM Special

Interest Group on Software Engineering.

Date: June 14-18, 1993
Event: Ada Europe
Location: Paris, France
POC: Ada Europe '93, AFCET, 156 Bd. Pereire, 75017 Paris, France

Date: September 18-23, 1993

58

-4

Appendix G: Ada Events Calendar

Event: TRI-Ada '93
Location: Seattle, Washington
Synopsis: The theme for the 1993 conference is, "The Management and Engineering of Software."

59

-I

59'

Appendix H: Glossary of Acronyms

Appendix H: Glossary of Acronyms

ACE Ada Command Environment (STARS)
ACM Association ior Computing Machinery
ACVC Ada Compiler Validation Capability (AJPO)
Ada Not an acronym
ADA American Dental Association
ADA Americans with Disabilities Act
Ada-IC Ada Information Clearinghouse
AdaJUG Ada Joint User's Group
AIC Ada Information Clearinghouse
ALRM Ada Language Reference Manual
AJPO Ada Joint Program Office
ANNA ANNotated Ada (Stanford University)
APSE Ada Programming Support Environment
ASAP Ada Static source code Analyzer Program
ASEET Ada Software Engineering Education and training Team
ASR Ada Software Repository
ATIP Ada Technology Insertion Program (AJPO)
CAIS Common APSE Interface Set
CARDS Central Archive for Reusable Defense Software
CASE Computer Aided Software Engineering
CMU Carnegie-Mellon University
COSMIC COmputer Software Management and Information Center (NASA)
CREASE Catalog of Resources for Education in Ada and Software Engineering
DACS Data and Analysis Center for Software
DARPA Defense Advanced Research Projects Agency
DIANA Distributed Intermediate Attributed Notation for Ada
DID Data Item Description
DTIC Defense Technical Information Center
FIPS Federal Information Processing Standard
GRACE Generic Reusable Ada Components for Engineering (EVB)
GRAMMI Generated Reusable Ada Man Machine Interface (ESL)
HOL High Order Language
HOLWG High Order Language Working Group
IDD Interface Design Document
IEEE Institute for Electrical and Electronic Engineers
IEEE CS IEEE Computer Society
IPSE Integrated Project Support Environment
KAPSE Kernel APSE
KIT KAPSE Interface Team
KLOC Thousand LOC
LOC Lines Of Code
LRM Language Reference Manual
MAPSE Minimal APSE
MIL-STD Military Standard
NBS National Bureau of Standards (obsolete, now NIST)
NISE NASA Initiative on Software Engineering
NIST National Institute for Standards and Technology (formerly NBS)
NUMWG NUMerics Working Group (SIGAda)

60

Appendix H: Glossary of Acronyms

00 Object Oriented
OO Object Oriented Analysis
OOD Object Oriented Design
OOP Object Oriented Programming
OOSD Object Oriented Structured Design
PCTE Portable Common Tool Environment (ESPRIT)
PDL Program Design Language
PIWG Performance Issues Working Group (SIGAda)
RADC Rome Air Development Center
RIACS Research Institute for Advanced Computer Science (NASA)
SAME SQL Ada Module Extension
SDD Software Design Document
SE Software Engineering
SEI Software Engineering Institute (Carnegie Mellon University)
SGML Standard Generalized Markup Language
SIGAda Special Interest Group on Ada (ACM)
SIGPLAN Special Interest Group on Programming LANguages
SIGSOFt Special Interest Group on SOFITware
SQA Software Quality Assurance
SJPO STARS Joint Program Office
STARS Software Technology for Adaptable Reliable Systems
STSC Software Technology Support Center
VADS Verdix Ada Development System (Verdix)
WADAS Washington Ada Symposium

61

REFERENCES

REFERENCES

I. Institute for Electrical and Electronic Engineers, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Ste 729-1983, Institute for Electrical and Electronic Engineers, New York, 1983.

2. Institute for Electrical and Electronic Engineers, IEEE Standard for Software Quality Assurance
Plans, IEEE Std 730-1984, Institute for Electrical and Electronic Engineers, New York, 1984.

3. National Institute of Standards and Technology, Ada, Federal Information Processing Standards Pub-
lication (FIPSPUB) 119, US Department of Commerce, National Institute of Standards and Technol-
ogy, Computer Systems Laboratory, Gaithersburg, Maryland, November 8 1985.

4. Institute for Electrical and Electronic Engineers, IEEE Standard for Software Quality Assurance
Planning, IEEE Std 983-1986, Institute for Electrical and Electronic Engineers, New.York, 1986.

5. US Department of Defense, Computer Programming Language Policy (PoD Directive 3405.1), US
Department of the Defense, Washington, D.C., April 2 1987.

6. US Department of the Army, Implementation of the Ada Programming Lar uage (HQDA LTR 25-

90-1), US Department of the Army, Washington, D.C., July 16 1990.

7. US Congress, Public Law 101-511, US Congress, Washington, D.C., November 5 1990.

8. National Institute of Standards and Technology, Database Language SQL, Federal Information Pro-
cessing Standards Publication (FIPSPUB) 127-1, US Department of Commerce, National Institute of
Standards and Technology, Computer Systems Laboratory, Gaithersburg, Maryland, February 2
1990.

9. National Institute of Standards and Technology, The User Interface Component of the Applications
Portability Profile, Federal Information Processing Standards Publication (FIPSPUB) 158, US
Department of Commerce, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, Maryland, May 29 1990.

10. US Department of the Air Force, Ada and C++: A Business Case Analysis, US Department of the
Air Force, Washington, D.C., July 9 1991.

11. Ada 9X Project Office, Ada 9X Revisions Relating to Information Systems Applications, Fact Sheet,
February 1991.

12. National Institute of Standards and Technology, Fedcal Information Processing Standards Publica-
tions (FIPSPUBS) Index, NIST Publications List 58, US Department of Commerce, National Insti-
tute of Standards and Technology, Computer Systems Laboramory, Gaithersburg, Maryland, October
1991.

13. Systems Research and Applications Corporation (SRA),, discussion between SRA and Corps per-
sonnel regarding the Rational Environment and alternatives, Fairfax, Virginia, October 9 1992.

14. P. P. Texel & Co., Object-Oriented Design with Ada (Version 3.1), P. P. Texel & Co., Eatontown,
New Jersey, 1992.

15. P. P. Texel & Co., Ada Coding (Version 3.1), P. P. Texel & Co., Eatontown, New Jersey, 1992.

62

4. 2

/.

REFERENCES

16. P. P. Texel & Co., Object-Oriented Requirements Analysis (Version 3.1), P.-P. Texel & Co., Eaton-
town, New Jersey, 1992.

17. D. Appleton Company, Corporate Information Management Process Improvement Methodology
for DoD Functional Managers, D. Appleton Company, Fairfax, Virginia, 1992.

18. Software Engineering Institute, SEI Mission Statement, Software Engineering Institute, Pittsburgh,
Pensylvania, February 1992.

19. Software Technology Support Center, CrossTalk: The Journal of Defense Software Engineering,
Software Technology Support Center, Hill Air Force Base, Utah, September 1992.

20. G. BOOCH, Object-Oriented Design with Applications, Benjamin/Cummings, Menlo Park, Califor-
nia, 1991.

21. R. J. BUHR, System Design with Ada, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

22. N. H. COHEN, Ada as a Second Language, McGraw Hill, New York, 1986.

23. H. J. CURNOW AND B. A. WICHMAN, "A Synthetic Benchmark," the Computer Journal, vol. 19, no.
1, pp. 43-49, February 1976.

24. P. FELLER, S. DART, AND G. DOWNEY, An Evaluation of the Rational Environment (CMU/SEI-88-
TR-15), Software Engineering Institute, Pittsburgh, Pennsylvania, 1988.

25. W. B. FRAKES, C. J. FOX, AND B. A. NEJMEH, Software Engineering in the UNIXIC Environment,
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

26. G. Coos, W. A. WULF, A. EVANs, jR., AND K. J. BUTLER, DIANA: An Intermediate Language for
Ada, Lecture Notes in Computer Science, 161, Springer-Verlag, Berlin, 1983.

27. R. JOHANSEN, Groupware: Computer Support for Business Teams, The Free Press, New York, 1988.

28. K. A. NYBERG, Ada: Sources & Resources, Grebyn Corporation, Vienna, Virginia, 1991.

29. 0. E. WHEELER, Ada Transition Study (prepared for the Waterways Experiment Station under Con-
tract Number DACA39-92-K-0018), Memphis State University, Memphis, Tennessee, September 30
1992.

63

IBIGAH

BIBLIOGRAPHY

BIBLIOGRAPHY

Software Productivity Consortium, Ada Quality and Style:, Guidelines for Professional Programmers,
Van Nostrand Reinhold, New York, 1989. 230 pp. (ISBN: 0-442-23805-3; $26.95/paper)

Provides a set of specific guidelines for using the powerful features of Ada in a disciplined manner.
Consists of concise statements of the principles that should be followed, and the rationale for each
guideline.

US Department of Defense, The Programming Language Ada: A Reference Manual: Proposed Standard
Document, Lecture Notes in Computer Sciences, 106, Springer-Verlag, Berlin, 1983. (ISBN: 0-
387-10693-6; $19.00/paper)

E. ANDREWS, ED., Concurrent Programming with Ada., Benjamin-Cummings, Menlo Park, California.
(ISBN: 0-8053-0088-0; $19.16/paper text)

C. ATKINSON, Object-Oriented Reuse, Concurrency and Distribution: An Ada-Based Approach,
Addison-Wesley, Reading, Massachusetts, 1991. 270 pp. (ISBN: 0-201-56527-7; $37.75)

The book includes an introduction to DRAGOON, the object-oriented language that combines the
power of object-oriented languages with the software engineering features of Ada; examples of
DRAGOON's use of multiple inheritance to handle aspects of concurrency and distribution; illustra-
tions of how DRAGOON's features my be implemented in Ada.

C. ATKINSON, ET AL., Adafor Distributed Systems, Ada Companion Series, Cambridge University Press,
Cambridge, 1988. 147 pp. (ISBN: 0-521-36154-0; $39.50)

Describes the final report of the DIstributed Ada DEMonstrated (DIADEM) project, which studied
the problems and developed solutions for using Ada to program real-time, distributed control sys-
tems. Demonstrates new techniques for controlling such systems from a distributed Ada program.

C. N. AUSNaT, ET AL., Ada in Practice, Professional Computing Series, Springer-Verlag, Berlin, 1985.
195 pp. (ISBN: 0-521-36154-0; $32.50)

Identifies and resolves issues related to Ada usage and promotes effective use of Ada in general pro-
gramming, design practice, and in embedded computer systems. Contains 15 case studies that cover
five general areas of the Ada language: naming conventions, types, coding paradigms, exceptions
and program structure.

L. BAKER, Artificial Intelligence with Ada, McGraw-Hill, New York, 1989. 361 pp. (ISBN: 0-07-
003350-1; $39.95)

Presents approximately 8,000 lines of full coding in Ada along with functions which include
backward-chaining expert systems snells forward chaining expert systems shells and an ATN natural
language parser. Discusses the code for implementing each program and illustrates each by one or
more examples.

J. G. P. BARNES, Programming in Ada, Addison-Wesley, Reading, Massachusetts, 1989. 494 pp. (ISBN:
0-201-17566-5; $32.25)

Copyright 1992.]IT Research Institute. All rights assigned to the U.S. Government (Ada Joint Program Office). Permission to
reprint this flyer, in whole or in part, is granted, provided the AdaIC is acknowledged as the source. If this flyer is reprinted as
part of a published document. please send a courtesy copy of the publication to AdaMC, c/o UIT Research Institute, 4600 Forbes
Boulevard, Lanham, MD 20706-4320. The AdaIC is sponsored by the Ada Joint Program Office.

64

S,*1

BIBLIOGRAPHY

Discusses Ada using a tutorial style with numerous examples and exercises. Assumes readers have
some knowledge of the principles of programming. Covers the following: Ada concepts, lexical
style, scalar types, control structures, composite types subprograms, overall structures, private types,
exceptions advanced types, numerics types, generics tasking, external interfaces.

J. BAUM, The Calculating Passion of Ada Byron, Archon Books, Hamden, Connecticut, 1986. 133 pp.

(ISBN: 0-208-02119-1; $23.50)

Details the life of Ada Byron, her training in mathematics, her tumultuous relationship witi, her
mother and her contribution to the study of science.

V. BERZINs, L. BERZINS, AND SOFrWARE ENGINEERING WITH ABSTRACTIONS, Addison-Wesley, Read-
ing, Massachusetts, 1991. (ISBN: 0-201-08004-4)

T. J. BIGGERSTAFF AND A. J. PERLIS, EDS., Software Reusability Concepts and Models: Volume 1: Con-
cepts and Models, ACM Press, New York, 1989. (IS3N: 0-201-08017-6)

T. J. BIGGERSTAFF AND A. J. PERLIS, EDS., Software Reusability Concepts and Models: Volume 2: Appli-
cations and Experience, ACM Press, New York, 1989. (ISBN: 0-201-50018-3)

D. BJOERNER AND 0. N. tEST, Towards a Formal Description of Ada, Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, 1980. 630 pp. (ISBN: 0-387-102833; $31.00/trade)

Describes the Ada programming language, discusses compiler development and provides a formal
definition of Ada.

G. BOOCH, Object Oriented Design with Applications, Benjamin-Cummings, Menlo Park, California,
1991. (ISBN: 0-8053-0091-0)

Offers guidance for constructing object-oriented systems and provides a description of object-
oriented design methods. Includes examples drawn from the author's experience in developing
software systems and five application projects.

G. BOOCH, Software Engineering with Ada, Benjamin-Cummings, Menlo Park, California, 1988. 580 pp.
(ISBN: 0-8053-0604-8; $31.95)

Introduces Ada from a software engineering vantage. Addresses the issues of building complex sys-
tems. Includes new features in this second version: a more thorough introduction to Ada syntax and
semantics, an updated section on object-oriented techniques to reflect the current state of knowledge
and improved examples that illustrate good Ada style for production systems development.

G. BOOCH, Software Components With Ada: Structures, Tools, and Subsystems, Benjamin-Curmnings,
Menlo Park, California, 1987. 635 pp. (ISBN: 0-8053-0609-9; $35.50/paper) --

Catalogs reusable software components and provides examples of Ada programming style. Presents
a study of data structures and algorithms using Ada.

F. BOrT, ED., Ada Yearbook 1991, Van Nostrand Reinhold, New York, 1991. (ISBN: 0-442-30836-1;
$54.95/trade)

D. BOVER, Introduction to Ada, Addison-Wesley, Reading, Massachusetts, 1991. (ISBN: 0-201-50992-
X; $30.25/trade)

D. L. BRYAN AND 0. MENDAL, Exploring Ada: Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey,
1990. (ISBN: 0-13-295684-5; $34.00/text) (See Volume 2 under Mendal)

__,

-1 , " "WIN*

BIBLIOGRAPHY

Describes Ada's type model, statements, packages and subprograms. Includes programming
features such as information hiding, facilities to model parallel tasks, data abstraction, and software
reuse.

R. BRYANT AND B. W. VAGET, EDS., Simulation in Strongly 7yped Languages: Ada Pascal, Simula, SCS
Simulation Series, 13, Society for Computer Simulation, San Diego, California, 1984. (ISBN: 0-
317-05019-2; $36.00/trade)

R. J. BUHR, Practical Visual Techniques in System Design with Applications to Ada, Prentice-Hall,
Englewood Cliffs, New Jersey, 1990. 533 pp. (ISBN:0-13-880808-2; $43.20/casebound)

Offers a personal statement on how to use visual techniques to organize one's thinking during the
design process.

R. J. BUHR, System Design with Ada, Prentice-Hall, Engle wood Cliffs, New Jersey, 1984. 256 pp. (ISBN:
0-13-880808-2; $48.00 paperback) (ISBN:0-13-881623-9; $55.00/text)

Stresses aspects of Ada important for design. Aims numerous examples of notations at teaching,
learning, CAD, and uses in industrial practice. Contains three divisions: 1) prov/idcs a top down
overview of the design features of Ada; 2) develops the design notation and provides a tutorial on
the design process using simple examples; 3) treats advanced issues such as implementing the X.25
packet switching protocol.

A. BURNS, Towards Ada9X, lOS Press, 1992. (ISBN: 90-5199-075-8)

This book is a collection of edited papers on the general theme of Ada 9X. Two papers directly
address the likely language changes. The first of these is written by one of the Ada9X distinguished
reviewers. The second is by one of the team members that is actually implemerting the language
changes. A further paper describes how the new language features will directly support the pro-
gramming of hard real-time systems. The book includes a paper written by the chairman of the
ARTEWG group, that describes the new release of the catalog of interface features and options for
an Ada run-time system (CIFO). Other areas covered include interface bindings, such as to SQL or
POSIX, to Ada.

A. BURNS, Concurrent Programming in Ada, Ada Cumpanion Serie., Cambridge University Press, Cam-
bridge, 1985. 241 pp. (ISBN: 0-521-30033-9; $34.50/trade)

Reports on Ada tasking ofrering a detailed description and an assessment of the Ada language con-
cemed with concurrent programming.

A. BURNS AND A. WELLINGS, Real-Time Systems and Their Programming Languages, Addison-Wesley,
Reading, Massachusetts, 1990. 575 pp. (ISBN: 0-201-17529-0)

Provides a study of real-time systems engineering, and describes and evaluates the programming
languages used in this domain. Considers three programming languages in detail: Ada, Modula-2,
and Occam.2.

A. BURNS, A Review of Ada Tasking, Lecture Notes in Computer Science, 262, Springer-Verlag, Berlin,
1987. (ISBN: 0-387-18008-7; $15.50)

W. E. BYRNE, Software Design Techniques for Large Ada Systems, Digital Press, Burlington, Mas-
sachusetts, 1991. 314 pp. (ISBN: 1-55558-053-X; $45)

Intoduces design strategies for controlling complexities inherent in large computer programs and in
software systems is groups of large computer programs executing concurrently. Focuses primarily
on issues associated with the design of software systems as a whole rather than on localized design

BIBLIOGRAPHY

and coding issues.

P. CAVERLY AND P. GOLDSTEIN, Introduction to Ada: A Top Down Approach for Programmers, Brooks-

Cole. Monterey, California. 1986. 237 pp. (ISBN:0-534-05820-5; $18.50/paper)

Organizes and emphasizes those features that distinguish Ada from other programming languages.
Uses a cyclical approach to the treatment of many topics. Gives a brief history of the development
of the Ada language. Introduces the I/O capabilities, procedures, character and numeric data types
and subtypes, and the concept of an Ada program library. Discusses enumeration, array, record, and
derived types, and demonstrates how the package can be used to encapsulate data types. Explains
access types and applications and the encapsulation of data objects in packages. illustrates how
finite-state machines can be represented by packages. Describes the essentials of tasking and deals
with blocks and exceptions. Introduces the reader to private types types with discriminates, and
generic units.

G. W. CHERRY, Parallel Programming in ANSI Standard Ada, Prentice-Hall, Englewood Cliffs, New Jer-

sey, 1984. 231 pp. (ISBN: 08359-5434-X; $48.00/text)

Explores parallel sorting, searching, root finding, process pipelining object (data) flow graphs,
exception handling, etc., using Ada.

P. M. CHIRUAN, Introduction to Ada. Weber Systems, 1985. 291 pp. (ISBN: 0-916460-42-8; $19.95)

Provides a basic course in the Ada programming language. (Ada courses and/or self-study)

R. G. CLARK, Programming in Ada: A First Course, Cambridge University Press, Cambridge, 1985. 215
pp. (ISBN: 0-521-25728-X; $47.50/trade) (ISBN: 0-521-27675-6; $21.95/paper)

Introduces the Ada programming language. Targets persons without previous experience in pro-
gramming. Details how to design solutions on a computer. Concentrates on solving simple prob-
lems in the early sections: the later sections explore how packages can be used in constructing large
reliable programs. Emphasizes central features such as data types, subprograms, packages, separate
compilation, exceptions and files. ANSI/MIL-STD-1815A-1983 is referenced throughout the book.

N. C. COHEN, Ada as a Second Language, McGraw-Hill, New York, 1986. 838 pp. (ISBN: 0-07-
011589-3; $36.04/paper)

Explains Ada to those who wish to acquire a reading and writing knowledge of the Ada language.
Also a programming reference source.

R. CONN, ED., Ada Software Repository (ASR), Zoetrope, 1990. 35 pp. (ISBN: 0-918432-78-2;
$16.95/paper)

Describes how to use the Ada Software Repository, which contains Ada programs, software corn-
ponents, and educational materials, and resides on the host computer of the Defense Data Network
(DDN).

CtJLWIN,'Ada: A Developmental Approach, Prentice-Hall, Englewood Cliffs, New Jersey.

Intended for use on courses which teach Ada as the first programming language. The book is
designed to take the reader from the basic principles of programming to advanced techniques. This
book provides a complete introduction to software development using the programming language,
Adra It is not only concerned with the production of Ada programs, but it is also an introduction to
the process of implementation and testing. Features include: a carefully structured tutorial which
includes software development, design, testing, and prodluction.

67

77-- - , .--* - - I
*.j**' , • //I " N,,

BIBLIOGRAPHY

3. DAWES, Er AL, EDS., Selecting an Ada Compilation System, Ada Companion Series, Cambridge
University Press, Cambridge, 1990. 173 pp. (ISBN:0-521-40498-3; $42.95)

Presents the findings of the Ada-Europe specialist group for compiler assessment.

J. DAWES, The Professional Programmers Guide to Ada, Pittman Publishing, Marshfield, Massachusetts,
1988. (ISBN: 0-273-02821-9; $100.00x)

S. F. DORCHAK AND P. B. RICE, Writing Readable Ada: A Case Study Approach, Heath, Lexington, Mas-
sachusetts, 1989. 244 pp. (ISBN: 0-669-12616-0; $17.00)

Contains a style guide, which gives suggestions for enhancing code readability; devotes a chapter to
the discussion of concurrency, an advanced feature of modem programming languages; a fully
coded Ada program, along with a sample run; a bibliography, which lists books and articles about
Ada and software engineering principles; two indexes, one devoted exclusively to references of case
study modules and the other listing important topics and concepts.

T. F. ELBERT, Embedded Programming in Ada, Van Nostrand Reinhold, New York, 1989. 523 pp. (ISBN:
0-442-22350-1; $55.00/trade)

Clarifies Ada for the practicing programmer and for the advanced engineering or computer science
student. Assumes the reader has acquired a certain level of sophistication, general concepts nor-
mally found in introductory programming texts are not covered. Also, presumes the reader is fami-
liar with operating systems and has a basic knowledge of some block-structured language such as
PL/I and Pascal.

M. B. FELDMAN AND E.B. KOFFMAN, Ada Problem Solving & Program Design, Addison-Wesley, Read-
ing, Massachusetts, 1991. (ISBN:0-201-5006-3/diskette) (ISBN:0-201-55560/trade)

Presents Ada to the beginning programmer with emphasis on packages. Contains no dynamic data
structures, pointers, or tasking.

M. B. FELDMAN, Data Structures with Ada, Prentice-Hall, Englewood Cliffs, New Jersey, 1985. 314 pp.

Highlights the use of Ada as a general purpose programming language. Includes the following:
linked lists, queues and stacks, graphs, trees hash methods, sorting, etc. Does not include generics;
it was written before compilers could handle generics. Free software available from the author.

A. R. FEUER AND N. GEHANI, Comparing & Assessing Programming Languages: Ada, C & Pascal,
Prentice-Hall, Englewood Cliffs, New Jersey, 1984. (ISBN: 0-13-154840-9; $32.00/paper text)

D. A. FISHER, ED., Ada Language Reference Manual., Gensoft Corp., 1986. (ISBN: 0-9618252-0-0;
$12.95/paper text)

G. FISHER, ED., Approved Ada Language Commentaries, Ada Letters Series, 9, ACM Press, New York,
1989. (ISBN: 0-89791-311-6; $30.00/paper text)

B. FORD, ET AL., Scientific Ada, Ada Companion Series, Cambridge University Press, Cambridge, 1987.
386 pp. (ISBN: 0-521-33258-3; $44.50/trade)

Explores aspects of the Ada programming language that are relevant to the scientific (i.e., numeric)
community at large. Concentrates on the numeric models of Ada and a number of Ada-specific
features (e.g., generics). Reviews guidelines for the design of large scientific libraries in Ada.

R. J. GAUTIER AND P. J. WALIUS, Software Reuse with Ada, Peregrinus Ltd., Stevenage, Hertfordshire,
England, 1990. 205 pp. (ISBN: 0-86341-173-8)

68

=777 m- . ,

BIBLIOGRAPHY

Contains three sections: 1) general reuse issues, comprises a collection of papers on various aspects

of Ada software reuse; 2) case studies of Ada reuse in practice; and 3) Ada Reuse Guidelines which
appear in their final form in this section.

N. GEHANI, Ada: An Advanced Introduction, Prentice-Hall, Englewood Cliffs, New Jersey, 1989. 280 pp.
(ISBN: 0-13-004334-6 $32.40/paper)

Introduces advanced problem-solving in Ada. Emphasizes modular programming as good program-
ming practice.

N. GEHANI, Ada: Concurrent Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 261 pp.
(ISBN: 0-13-004011-8; out of print)

Offers a large collection of concurrent algorithms, expressed in terms of the constructs provided by
Ada, as the support for concurrent computation. Explains the concurrent programming facilities in
Ada and shows how to use them effectively in writing concurrent programs. Surveys concurrent
programming in other languages, and discusses issues specific to concurrent programming facilities
in Ada.

N. GEHANI, Unix Ada Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 310 pp. (ISBN:
0-13-938325-5; $34.00/paper)

Focuses on the novel aspects of the Ada language and explains them hy many examples written out
in full. Examines the interesting differences between the Ada language and other programming
languages. Also, notes the similarities between Ada, Pascal, C, PL1I, and Fortran.

G. GILPIN, Ada: A Guided Tour and Tutorial, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 410

pp. (ISBN: 0-13-73599-0; $21.95/paper)

Reports on the developments in control structures, scalar data types multitasking, program structure
and access types. /

S. J. GOLDSACK, Ada for Specification: Possibility and Limitations, Ada Companion Series, Cambridge
University Press, Cambridge, 1986. 265 pp. (ISBN: 0-521-30853-4; $7.50/trade) 1

Examines the use, role, features and purpose of specification languages, particularly Ada, in a
large-scale software project.

D. W. GONZALEZ, Ada Programmer's Handbook, Benjamin-Cummings, Menlo Park California, 1991.
(ISBN: 0-8053-2529-8; $13.95/paper)

D. W. GONZALEZ, Ada Programmer's Handbook and Language Reference Manual, Benjamin-
Cummings, Menlo Park, California, 1991. 200 pp. (ISBN: 0-8053-2528-X; 19.95/paper)

Presents information intended for those professionals transitioning to Ada. includes a glossary.

G. GOoS, ET AL., Diana: An Intermediate Language for Ada, Lecture Notes hi Computer Science,
Springe:-Verlag, Berlin, 1987. 201 pp. (ISBN: 0-387-12695-3; $20.00/paper)

Describes DIANA, a Descriptive Intermediate attributed Notation for Ada, which resulted from a
merger of the properties of two earlier similar intermediate forms: TCOL and AIDA.

A. HABERMANN AND D. E. PERRY, Ada for Experienced Programmers, Computer Science Series,
Addison-Wesley, Reading, Massachusetts, 1983. 480 pp. (ISBN: 0-201-11481-X; $29.25/paper)

Offers a comparative review of Ada and Pascal, using dual program examples tc illustrate software
engineering techniques.

69

\ • L _- J ,-

S"" •¢z. -- - ! "

BIBLIOGRAPHY

A. N. HABERMANN, ED., System Development & Ada, Lecture Notes in Computer Science, 275,
Springer-Verlag, Berlin, 1987.. (ISBN: 0-387-18341-8; $25.70/paper)

S. HEILBRUNNER, Ada in Industry: Proceedings of the Ada-Europe International Conference, Munich,
June 7-9, 1988, Ada Companion Series, Cambridge University Press, Cambridge, 1988. 262 pp.
(ISBN:0-521-36347-0; $42.50/trade)

Provides state of the art reports on the Ada programming language.

P. HIBBARD, ET AL., Studies in Ada Style, Springer-Verlag, Berlin, 1983. 101 pp. (ISBN: 0-387-90816-1;
$21.50/paper)

Presents concepts of the abstractions embodied in Ada with five examples: a queue, a graph struc-r
ture, a console driver, a table handler and a solution to Laplace's equation using multiple tasks.

J. ICHBIAH, ET AL., Rationale for the Design of the Ada Programming Language, Cambridge University
Press, Cambridge, 1991. (ISBN: 0-521-39267-5; $54.95)

Presents the rationale behind the design and development of the Ada programming language.

P. 1. JOHNSON, The Ada Primer, McGrawi-Hill, New York, 1985. (out of print)

P. I. JOHNSON, Ada Applications and Administration, McGraw-Hill, New York, 1990. 209 pp. (ISBN: 0-
07-032627-4ISBN; $39.95/Text edition)

Explains how to ensure the reliable, error-free, cost-effective operation of large computer systems
with Ada. Updates and revises earlier edition (first entitled The Ada Primer).

D. JONES, Ada in Action with Practical Programming Examples., John Wiley & Sons, New York, 1989.
487 pp. (ISBN: 0-471-50747-4; $57.95/text) (ISBN: 0-471-60708-8; $34.95/paper text)
Helps Ada programmers avoid common pitfalls and provides them with many reusable Ada routines.
Discusses a variety of numeric considerations user interfaces, utility routines, and software
engineering and testing. Provides examples of Ada code.

H. KA7ZAN, JR., Invitation to Ada (Condensed Edition), Petrocelli, Princeton, New Jersey, 1984. 173 pp.
(out of print)

Introduces Ada in terms of three broad classes of applications: numerical, system programming, and
real-time programming.

H. KA7ZAN, JR., Invitation to Ada, Petrocelli, Princeton, New Jersey, 1984. (ISBN: 0-89433-239-2;
$14.95/paper text)

H. KATUAN, JR., Invitation to Ada & the Ada Reference Manual, Petrocelli, 1982. '29 pp. (ISBN: 0-
89433-132-9; $34.95/text)

Calls for the scientific computing community to adopt the Ada programming language. Part II is the
Ada Reference Manual 1980 version.

D. KE'FFE, ET AL., Pulse: An Ada-based Distributed Operating System, APIC Studies n Data Process-
ing, 26, Academic Press, New York, 1985. (ISBN: 0-12-402979-1; $39.95/paper)

J. KELLER, The Ada Challenge 1988: Strategies Risk & Payoffs, Pasha Publications, 1988. (ISBN: 0-
935453-22-9; $174.00/paper)

70

S.... :': 7

BIBLIOGRAPHY

B. KRELL, Developing with Ada: Life-Cycle Methods, Bantam Books, New York, 1992. (ISBN 0-553-
0909-3; $54.95/hard cover)

Dr. Krell offers his opinion on the key to using Ada to its fullest potential: a tested development
methodology for implementing real-time Ada systems quickly and efficiently, from requirements
and code generation through design and test. By applying the steps outlined in Dr. Krell's book,
"software engineers can create real-time systems that are flexible, integrate easily, perform well, and
satisfy user needs," according to the publisher.

B. KRIEG-BRUECKNER, B., ET AL, EDS., Anna: A Language for Annotating Ada Programs, Lecture Notes
in Computer Science, 260, Springer-Verlag, Berlin, 1987. (ISBN: 0-387-17980-1; $15.50/paper)

H. LEDGARD, Ada: A First Introduction, Springer-Verlag, Berlin, 1983. 130 pp. (ISBN: 0-540-90814-5)

Assumes that the reader has experience with some other higher order programming language. Out-
lines several key features of Ada; a treatment of the facilities -- concept of data types, the basic
statements in the language, subprograms, packages, and general program structure.

H. LEDGARD, Ada: An Introduction, Springer-Verlag, Berlin, 1987. (ISBN: 0-387-90814-5; $22.00/paper
text)

P. LEWI AND J. PAREDAENS, Data Structures of Pascal, Algol Sixty-Eight, PL-J & Ada. (ISBN: 0-387-
15121-4; $49.00/paper)

N. LOMUTO, Problem Solving Methods with Examples in Ada, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1987. 176 pp. (ISBN: 0-13-721325-5)

Contains a collection of hints on solving programming problems. Includes examples along with sec-
tions on the art of thinking, analyzing the problem, systematic development, looking back, ideas for
ideas, and casr. studies.

D. C. LUCKHAM, ET AL., Programming with Specifications: An Introduction to Anna, a Language for
Specifying Ada Programs, Texts and Monographs in Computer Science, Springer-Verlag, Berlin,
1990. 416 pp. (ISBN: 0-387-97254-4)

Offers an in-depth look at ANNA, a form of the Ada language in which specially marked comments
act as formal annotations about the program to which they are attached.

B. LYNCH, ED., Ada: Experiences & Prospects: Proceedings of the Ada-Europe International Confer-
ence, Dublin, 1990, Ada Companion Series, Cambridge University Press, Cambridge, 1990. (ISBN:
0-521-39522-4; $9.50/trade)

T. G. LYONS, Selecting an Ada Environment, Ada Companion Series, Cambridge University Press, Cam-
bridge, 1986. 239 pp. (ISBN: 0-521-32594-3 (British); $29.95/trade)

Provides an overview of the Ada Programming Support Environment (APSE). Covers six main
issues in selecting an environment. Contains summaries of current approaches to likely problems,
indications of deficiencies in existing knowledge, and checklists of questions to ask when consider-
ing a particular environment.

J. A. MCDERMID AND K. RIPKEN, Life Cycle Support in the Ada Environment, Ada Companion Series,
Cambridge University Press, Cambridge, 1984. (out of print)

A. D. MCGETFRICK, Program Verification Using Ada, Cambridge University Press, Cambridge, 1982.
345 pp. (ISBN: 0-521-24215-0; $57.50/Trade) (ISBN: 0-521-28531-3; $29.95/paper)

71

BIBLIOGRAPHY

Discusses such topics as correctness of nonbranching programs invariants and termination proofs
via well formed sets, elementary types, arrays, records, access types, packages as well as an encap-
sulation mechanism for abstract data types, and parallelism.

N. E. MILLER AND C. PETERSON, File Structures with Ada, Benjamin-Cummings, Menlo Park, Califor-
nia, 1989. (ISBN-8053-0440-1; $39.95/text)

G. MENDAL AND D. L. BRYAN, Exploring Ada: Volume 2, Prentice-Hall, Englewood Cliffs, New Jersey,
1992. (ISBN: 0-13-297227-1) (See Volume 1 under Bryan)

A method of presentation based on the Socratic method, provides coverage and the semantics of
Ada. Discusses focused problems individually. The second volume expands on the larger issues
dealing with Ada's more advanced features.

G. L. MOHNKERN AND B. MOHNKERN, Applied Ada, TAB Books, Blue Ridge Summit, Pennsylvania,
1986. 326 pp. (ISBN: 0-8306-2736-7)

Intnrduces the Ada language on a practical level. Targets persons who understand the basic termi-
nolcgy and concepts of programming. (A particular ianguage is not a prerequisite.) Instructs
through examples of programs written in Ada.

D. R. MUSSER AND A. A. STEPANOV, The Ada Generic Library Linear List Processing Packages,

Springer-Verlag, Berlin, 1989. 265 pp. (ISBN: 0-387-97133-5: $39.00/trade)

Discloses the purpose of the Ada Generic Library as an attempt to provide Ada Programmers with
an extensive, well-documented library of generic packages whose use can substantially increase
productivity and reliability. Contains eight Ada packages, with over 170 subprograms for various
linear data structures based on linked lists.

D. NAIDITCH, Rendezvous with Ada: A Programmer's Introduction, John Wiley & Sons, New York, 1989.

477 pp. (ISBN: 0-471-61654-0; $39,95/paper)

Explains Ada to the beginning programmer (knowledge of at least one high level programming
language is advised). Concludes each chapter with exercises.

K. NIELSEN, Object-Oriented Design with Ada/Maximizing Reusability for Real-Time Systems, Bantam
Books, New York, 1992. (ISBN: 0-553-08955-2)

Shows Ada programmers how to design, implement, and maintain reusable real-time software sys-
tems using the object-oriented methods.

K. NIELSEN AND K. SHUMATE, Designing Large Realtime Systems with Ada, McGraw-Hill, New York,
1988. 464 pp. (ISBN: 0-07-046536-3; $58.95/text)

Presents a comprehensive methodology for the design and implementation of large realtime systems
in Ada. (The reader is expected to have a basic understanding of the Ada programming language.)

K. NIELSEN, Ada in Distributed Realtime Systems., McGraw-Hill, New York, 1990. 371 pp. (ISBN: 0-
07-046544-4; $58.95/text)

Emphasizes design paradigms and heuristics for the practicing software engineer. Provides impor-
tant background material for the builder of operating systems and runtime support environments for
distributed systems. Contains data on distributed systems, process abstraction and Ada for distri-
buted realtime systems, design paradigms for distributed systems, inter-processor communication,
virtual and physical nodes, and fault tolerance.

72

/

BIBLIOGRAPHY

J. NISSEN AND P. WALLIS, Portability and Style in Ada, Ada Companion Series, Cambridge University

Press, Cambridge, 1984. 202 pp. (out of print)

Examines style and portability guidelines for Ada programmers. Results of work by the Ada-Europe

Portability Working Group.

K. A. NYBERG, Ada: Sources & Resources, Grebyn Corporation, Vienna, Virginia, 1991. P. 0. Box 497

Vienna, VA. Telephone: 703/281-2194

K. A. NYBERG, ED., Annotated Ada Reference Manual, Grebyn Corporation, Vienna, Virginia, 1991. P.

0. Box 497 Vienna, VA. Telephone: 703/281-2194

Contains the full text of.ANSI/MIL-STD-1815A with inline annotations derived from the Ada Rap-

porteur Group of the International Organization for Standards responsible for maintaining the Ada

language.

E. W. OLSEN AND S.B. WHITEHILL, Adafor Programmers, Prentice-Hall, Englewood Cliffs, New Jersey,

1983.. 310 pp. (ISBN: 0-8359-0149-1; $38.00)

Includes many of the subtleties of Ada in a self-paced tutorial format. Contains the following: con-
ceptual overview; predefined types; expressions; basic Ada statements; subprograms; packages; etc.

A. ORME, ET AL, Reusable Ada Components Sourcebook, Cambridge University Press, Cambridge,
1992. 286 pp. (ISBN: 0 521 40351 0; $49.95)

The authors consider how the Ada software components that may be found in this book could be
used. According to the publishers both the novice and the expert software engineer will find useful
information in this book.

D. POKRASS AND G. BRAY, Understanding Ada: A Software Engineering Approach, John Wiley & Sons,
New York, 1985. (ISBN: 0-471-87833-2; $32.95/paper)

D. PRICE, Introduction to Ada, Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 150 pp. (ISBN:0-13-
477646-1; $26.95/trade)

Presents examples, programs, and program fragments showing Ada's power as a general purpose
language, plus step-by-step explanations demonstrating how Ada simplifies the production of large
programs. Requires little technical or mathematical sophistication.

I. C. PYL.E, The Ada Programming Language, Prentice-Hall, Englewood Cliffs, Naw Jersey, 1985. 345

pp. (ISBN 0-13-003906-3)

Describes the basic features of the Ada programming language. Covers the issues of program struc-
ture, and discusses machine specific issues. Assumes prior knowledge of programming. Introduces
topics in the context of embedded systems. Covers the following areas: the basic features of Ada;
the particular programming concepts in Ada that will probably be new to most programmers; the
issues of program structure; the machine-specific issues that can be expressed in a machine-
independent language and advanced treatment.

I. C. PYLE, Developing Safety Critical Systems with Ada, Prentice-Hall, Engiewood Cliffs, New Jersey,
1991. (ISBN: 0-13-204298-3; $39.00/paper)

A presentation of concepts for practicing engineers or programmers involved with the development
of safety-related computer-based systems. Considers the different roles involved in accepting safety
related systems and the corresponding human activities. Illustrates how Ada provides a framework
in which thu design rules for safety can be applied and confirmed. The author explains

73

BIBLIOGRAPHY

relationships, with major published guidelines for development of safety related software. Interprets
guidelines specifically for Ada. The material presented is for three contemporary viewpoints:
analyzer, synthesizer, checker. A senior-level course in Ada programming and software engineer-
ing.

M. W. ROGERS, Ada: Language, Compilers and Bibliography, Cambridge University Press, Cambridge,
1984. 332 pp. (ISBN: 0-521-26464-2; $24.95/trade)

Offers a photo reprint of the Ada standard, a guide listing the characteristics of an implementation
that shou!d be taken into account in the specification or selection of an Ada compiler and a bibliog-
raphy.

S. H. SAMB AND R. E. FRrrz, Introduction to Programming in Ada, Holt, Reinlart and Winston, New
York, 1985. (ISBN: 0-03-059487-1; $28.95/text)

S. H. SAIB AND R. E. FRITZ, Tutorial: The Ada Programming Language, IEEE Computer Society, 1983.
538 pp. (ISBN: 0-8053-7070-6; $25.56/paper)

Covers such topics as the histoiy and current status of Ada; basic language; schedule for industry
and DoD; preventing error, readable maintainable, modular systems; real-time features, portability;
and environments for Ada.

W. J. SAVrrCH, ET AL., Ada: An Introduction to the Art and Science of Programming, Benjamin-
Cummings, Menlo Park, California, 1992. (ISBN: 0-805'1-7070-6; $33.95/paper text)

Written specifically for the first programming course. It starts with variable declarations, simple
arithmetic expressions, simplified input-output, and builds upward toward subprograms and pack-
ages. A chapter-by- chapter instructor's guide is also available, as is a program disk with more than
140 completed programs from the text.

J. A. SAXON AND R. E. FRITZ, Beginning Programming with Ada, Prentice-Hall, Englewood Cliffs, New
Jersey, 1983. (out of print)

R. SHIMER, Ada, Amigo Projects, 1989. (ISBN: 0-685-30433-7; $12.00/paper text)

K. C. SHUMATE, Understanding Concurrency in Ada, McGraw-Hill, New York, 1987. 595 pp. (ISBN: 0-
•07-057299-2ISBN; $58.95/text)

Presents a detailed exposition of concurrency in Ada. Looks at five case studies and gives an
advanced introduction to real-time programming.

K. C. SHUMATE, Understanding Ada, John Wiley & Sons, New York. (ISBN; 0-471-605-204;
$51.00/text)

K. C. SHUMATE, Understanding Ada: With Abstract Data Types, John Wiley & Sons, New York, 1989.
(ISBN: 0-471-60347-3; $21.50/text)

J. SKANSHOLM, Ada from the Beginning, Addison-Wesley, Reading, Massachusetts, 1988. 617 pp.
(ISBN: 0-201-17522-3; $29.25)

Describes the principles and concepts of programming in a logical and easy-to-understand sequence
and discusses the important features of Ada (except parallel programming). Teaches the basics of
writing computer prugrams. Emphasizes the fundamentals of good programming. Provides a
grounding in the programnming language Ada. Covers the following: programming designs, the
basics of Ada, control statements, types subprograms, data structures, packages, input/output, excep-
tions dynamic data structures, files, and generic units.

74

1t

BIBLIOGRAPHY

C. H. SMEDEMA, ET AL., The Programming Languages Pascal, Modula, CHILL, Ada, Prentice-Hall,

Englewood Cliffs, New Jersey, 1983. 154 pp. (ISBN: 0-685-08596-1; $16.95/trade)

Provides an informal introduction to the most important characteristics of Pascal, Modula, CHILL,
and Ada. Discusses languages in historical order. Includes the history, application area, standardi-
zation aspects and future prospects of each.

J. SODHI, Computer Systems Techniques: Development, implementation, and Software Maintenance,
TPR, Scarsdale, New York, 1990. (ISBN: 0-8306-3376-6) Phone: 800-822-8138

J. SODHI, Managing Ada Projects Using Software Engineering, TPR, Scarsdale, New York, 1990. 246
pp. (ISBN: 0-8306-0290-9; $34.95/trade) Phone: 800-822-8138

Describes some of the practical aspects of developing a flawless project in Ada.

J. SODm1, Software Engineering: Methods, Management, and CASE Tools, TPR (a division of McGraw-
Hill), New York, 1991. (ISBN: 0-8306-3442-8) hone: 800/822-8138

I. SOMMERVILLE AND R. MORRISON, Developing Large Software Systems with Ada, International Com-
puter Science Series, Addison-Wesley, Reading, Massachusetts, 1987. (ISBN: 0-201-14227-9;
$26.95/paper text)

D. STEIN, Ada: A Life and Legacy, MIT Press, Cambridge, Massachusetts, 1985. 321 pp. (ISBN: 0-262-
19242-X; $30.00/T1rade) (ISBN: 0-262-69116-7; $10.95)

Presents the view that Ada Byron's mathematical and scientific achievements have been exag-
gerated.

M. J. STRATFORD-COLLINS, Ada: A Programmer's Conversion Course, Ellis Horwood Series in Comput-
ers & Their Applications, John Wiley & Sons, New York, 1982. (ISBN: 0-470-27332-1;
$56.95/trade)

S. TAFVELUN, ED., Ada Components: Libraries and Tools, Ada Companion Series, Cambridge University
Press, Cambridge, 1987. 288 pp. (ISBN: 0-521-34636-3; $44.50/trade)

Comprises the proceedings of the international conference organized by Ada Europe with the sup-
port of the Commission of the European Communities and the collaboration of SIGAda.

M. TEDD, ET AL., Ada for Multi-microprocessors, Ada Companion Series, Cambridge University Press,
Cambridge, 1984. 208 pp. (ISBN: 0-521-301033; $4450/trade)

Addresses those problems of distributed systems that arise out of the nature of Ada and support
environments. Discusses the issues of how to construct and run an Ada program for a valuable tar-
get configuration of several microcomputers, interconnected through shared memories multi-access
busses, local area networks, and end-to-end lines.

P. TEXEL, Introduction to Ada: Packages for Programmers, Wadsworth Publishing, Belmont, California,
1986. 441 pp. (ISBN: 0-534-06348-9; out of print)

Provides a guide to Ada that contains complete packages. V/O facilities and sample programs,
emphasizing top-down design throughout.

B. A. TOOLE, Ada, The Enchantress of Numbers: A Selection from the Letters of Lord Byron's Daughter
and Her Description of the First Computer, Strawberry Press, New York. (ISBN: 0-912647-09-4;
29.95)

The author states that she selected the letters in such a way to enable the reader to follow a loose

75

BIBLIOGRAPHY

story line of Lady Ada Lovelace's life. In her letters, Ada describes her thoughts of the first com-

puter, and Ms. Toole relates these descriptions to the modem software language, Ada.

J. TREMBLA?, ET AL., Programming in Ada, McGraw-Hill, New York, 1990. 489 pp. (ISBN: 0-07-
065180-9; $24.60/paper text)

Explains computer science concepts in an algorithmic framework, with a strong emphasis on prob-
lem solving and solution development.

J. UHL, An Attribute Grammar for the Semantic Analysis of Ada, Lecture Notes in Computer Science
Series, 139, Springer-Verlag, Berlin, 1982. (out of print)

B. UNGER, Simulation Software & Ada, SCS Simulation Series, 1984. (ISBN: 0-911801-03-0;
$16.00/paper)

E. N. VASILESCU, Ada Prograwmming with Applications, Allyn and Bacon, Newton, California, 1987. 539
pp. (out of print)

Offers a bottom-up approach to commercial and business uses of Ada emphasizing the features of
Ada that are most like tnose of traditional languages.

E. M. VASILESCU, Ada Programming, Allyn and Bacon, Newton, California, 1986. (out of print)

D. VOLPER AND M. D. KATZ, Introduction to Programming Using Ada, Prentice-Hall, Englewood Cliffs,
New Jersey, 1990. 650 pp. (ISBN: 0-13-493529-2; $30.00)

Uses the spiral approach as the presentation methodology in this introductory course in Ada pro-
gramming.

R. H. WALLACE, Practitioner's Guide to Ada, McGraw-Hill, New York, 1986. 373 pp. (ISBN: 0-07-
067922-3; $39.95)

Discusses the issues to be considered when making the transition to Ada on selecting toolsets, and
on using the language effectively. Covers the following: Ada as a language; Ada Oriented
Development Environments; Ada oriented design methodologies; Ada policies and standards; Ada
products and vendors; sources of Ada-related information; making the transition to Ada and other
uses of Ada.

Y. WALLACH, Parallel Processing & Ada, Prentice-Hall, Englewood Cliffs, New Jerey, 1990. (ISBN:
0-13-650789-1; $54.00/casebound)

P. J. WALLIS, Ada: Managing the Transition, Ada Companion Series, Cambridge University Press, Cam-
bridge, 1986. (ISBN: 0-521-33091-2; $44.50/trade)

P. J. WALLIS, ED., Ada Software Tools Interfaces, Lecture Notes in Computer Science Series, 180.
(ISBN: 0-387-13878-1; $16.00/paper)

D. A. WATr, ET AL., Ada Language and Methodology, Prentice-Hall, Englewood Cliffs, New Jersey,
1987. 515 pp. (ISBN: 0-13-004078-9; $37.00/paper)

Covers the Ada language in detail and introduces program methodologies appropriate for use with
Ada. Discusses the following topics: 1) covers a subset of Ada broadly comparable with most other
programmiing languages; 2) introduces the features of Ada that make it suitable for the construction
of large programs; 3) completes the treatment of the data types of Ada; 4) concludes the treatment of
program structures.

76

BIBLIOGRAPHY

P. WEGNER, Programming with Ada: An Introduction by Means of Graduated Examples, Prentice-Hall,
Englewood Cliffs, New Jersey, 1980. (out of print)

R. S. WIENER AND R. F. SINCOVEC, Programming in Ada, John Wiley & Sons, New York, 1983. 345 pp.
(out of print

Describes the major features of the Ada programming language covering basic control and data
structures associated with Ada, and powerful advanced features that differentiate it from previous
programming languages.

R. S. WIENER AND R. F. SINCOVEC, Software Engineering with Modula-2 & Ada, John Wiley & Sons,
New York, 1984. (ISBN: 0-471-89014-6; $51.95/text)

J. WINTERS, Power Programming With Adafor the IBM PC, TAB Books, Blue Ridge Summit, Pennsyl-
vania, 1987. 207 pp. (ISBN: 0-8306-2902-5; $16.95/paper) (ISBN 0-8306-7902-2; $24.95/trade)

Analyses programs in Ada for personal computers. Written for the beginning Ada programmer in a
style very easy to read and follow.

S. J. YOUNG, An Introduction to Ada, John Wiley and Sons, New York, 1983. 400 pp. (out of print)

Introduces the programming language and explains the underlying program design methodology,
illustrated with examples.

/7/

77/

/
., ~//

°If

"DATE:

4/1

/

